共计 4748 个字符,预计需要花费 12 分钟才能阅读完成。
往年不晓得有多少小伙伴留在原地过年,尽管今年过年不能回老家,但这个年也得过,也得买年货,给家人前辈送礼。于是我出于好奇心的想法利用爬虫获取某宝数据,并联合 Python 数据分析和第三方可视化平台来剖析一下大家过年都买了哪些货色,剖析后果大屏如下:
下面应用荡涤好的数据后用 finebi 第三方可视化工具实现的。接下来是用 Python 的实现过程,对于本文的叙述,次要分为以下五步:
- 剖析思路
- 爬虫局部
- 数据荡涤
- 数据可视化及剖析
- 论断与倡议
一、剖析思路
其实就明天的数据来讲,咱们次要做的是探索性剖析;首先梳理已有的字段,有题目(提取出品类)、价格、销量、店铺名、发货地。上面来做一下具体的维度拆分以及可视化图形抉择:
品类:
- 品类销量的 TOP 10 有哪些?(表格或者横向条形图)
- 热门(呈现次数最多)品类展现;(词云)
价格:年货的价格区间散布状况;(圆环图,察看占比)
销量、店铺名:
- 店铺销量最高的 TOP 10 有哪些?(条形图)
- 联合品类做联动,比方点坚果,对应展现销量排名的店铺;(联动,利用三方工具)
发货地:销量最高的城市有哪些?(地图)
二、爬取数据
爬取次要利用 selenium 模仿点击浏览器,前提是曾经装置 selenium 和浏览器驱动,这里我是用的 Google 浏览器,找到对应的版本号后并下载对应的版本驱动,肯定要对应浏览器的版本号。
pip install selenium
装置胜利后,运行如下代码,输出关键字 ” 年货 ”,进行扫码就能够了,等着程序缓缓采集。
# coding=utf8
import re
from selenium.webdriver.chrome.options import Options
from selenium import webdriver
import time
import csv
# 搜寻商品,获取商品页码
def search_product(key_word):
# 定位输入框
browser.find_element_by_id("q").send_keys(key_word)
# 定义点击按钮,并点击
browser.find_element_by_class_name('btn-search').click()
# 最大化窗口:为了不便咱们扫码
browser.maximize_window()
# 期待 15 秒,给足工夫咱们扫码
time.sleep(15)
# 定位这个“页码”,获取“共 100 页这个文本”page_info = browser.find_element_by_xpath('//div[@class="total"]').text
# 须要留神的是:findall()返回的是一个列表,尽管此时只有一个元素它也是一个列表。page = re.findall("(\d+)", page_info)[0]
return page
# 获取数据
def get_data():
# 通过页面剖析发现:所有的信息都在 items 节点下
items = browser.find_elements_by_xpath('//div[@class="items"]/div[@class="item J_MouserOnverReq "]')
for item in items:
# 参数信息
pro_desc = item.find_element_by_xpath('.//div[@class="row row-2 title"]/a').text
# 价格
pro_price = item.find_element_by_xpath('.//strong').text
# 付款人数
buy_num = item.find_element_by_xpath('.//div[@class="deal-cnt"]').text
# 旗舰店
shop = item.find_element_by_xpath('.//div[@class="shop"]/a').text
# 发货地
address = item.find_element_by_xpath('.//div[@class="location"]').text
# print(pro_desc, pro_price, buy_num, shop, address)
with open('{}.csv'.format(key_word), mode='a', newline='', encoding='utf-8-sig') as f:
csv_writer = csv.writer(f, delimiter=',')
csv_writer.writerow([pro_desc, pro_price, buy_num, shop, address])
def main():
browser.get('https://www.taobao.com/')
page = search_product(key_word)
print(page)
get_data()
page_num = 1
while int(page) != page_num:
print("*" * 100)
print("正在爬取第 {} 页".format(page_num + 1))
browser.get('https://s.taobao.com/search?q={}&s={}'.format(key_word, page_num * 44))
browser.implicitly_wait(25)
get_data()
page_num += 1
print("数据爬取结束!")
if __name__ == '__main__':
key_word = input("请输出你要搜寻的商品:")
option = Options()
browser = webdriver.Chrome(chrome_options=option,
executable_path=r"C:\Users\cherich\AppData\Local\Google\Chrome\Application\chromedriver.exe")
main()
采集后果如下:
数据筹备实现,两头从题目里提取类别过程比拟耗时,倡议大家间接用整顿好的数据。
大略思路是对题目进行分词,命名实体辨认,标记出名词,找出类别名称,比方坚果、茶叶等。
三、数据荡涤
这里的文件荡涤简直用 Excel 搞定,数据集小,用 Excel 效率很高,比方这里做了一个价格区间。到当初数据荡涤曾经实现(能够用三方工具做可视化了),如果大家爱折腾,能够接着往下看用 Python 如何进行剖析。
四、数据可视化及剖析
1、读取文件
import pandas as pd
import matplotlib as mpl
mpl.rcParams['font.family'] = 'SimHei'
from wordcloud import WordCloud
from ast import literal_eval
import matplotlib.pyplot as plt
datas = pd.read_csv('./ 年货.csv',encoding='gbk')
datas
2、可视化:词云图
li = []
for each in datas['关键词'].values:
new_list = str(each).split(',')
li.extend(new_list)
def func_pd(words):
count_result = pd.Series(words).value_counts()
return count_result.to_dict()
frequencies = func_pd(li)
frequencies.pop('其余')
plt.figure(figsize = (10,4),dpi=80)
wordcloud = WordCloud(font_path="STSONG.TTF",background_color='white', width=700,height=350).fit_words(frequencies)
plt.imshow(wordcloud)
plt.axis("off")
plt.show()
图表说明:咱们能够看到词云图,热门(呈现次数最多)品类字体最大,顺次是:坚果、茶叶、糕点等。
3、可视化:绘制圆环图
# plt.pie(x,lables,autopct,shadow,startangle,colors,explode)
food_type = datas.groupby('价格区间').size()
plt.figure(figsize=(8,4),dpi=80)
explodes= [0,0,0,0,0.2,0.1]
size = 0.3
plt.pie(food_type, radius=1,labels=food_type.index, autopct='%.2f%%', colors=['#F4A460','#D2691E','#CDCD00','#FFD700','#EEE5DE'],
wedgeprops=dict(width=size, edgecolor='w'))
plt.title('年货价格区间占比状况',fontsize=18)
plt.legend(food_type.index,bbox_to_anchor=(1.5, 1.0))
plt.show()
图表说明:圆环图和饼图相似,代表局部绝对于整体的占比状况,能够看到 0 ~ 200 元的年货大略 33% 左右,100 ~ 200 元也是 33%。阐明大部分的年货的价格趋于 200 以内。
4、可视化:绘制条形图
data = datas.groupby(by='店铺名')['销量'].sum().sort_values(ascending=False).head(10)
plt.figure(figsize = (10,4),dpi=80)
plt.ylabel('销量')
plt.title('年货销量前十名店铺',fontsize=18)
colors = ['#F4A460','#D2691E','#CDCD00','#EEE5DE', '#EEB4B4', '#FFA07A', '#FFD700']
plt.bar(data.index,data.values, color=colors)
plt.xticks(rotation=45)
plt.show()
图表说明:以上是店铺按销量排名状况,能够看到第一名是三只松鼠旗舰店,看来过年大家都喜爱吃干货。
5、可视化:绘制横向条形图
foods = datas.groupby(by='类别')['销量'].sum().sort_values(ascending=False).head(10)
foods.sort_values(ascending=True,inplace=True)
plt.figure(figsize = (10,4),dpi=80)
plt.xlabel('销量')
plt.title('年货举荐购买排行榜',fontsize=18)
colors = ['#F4A460','#D2691E','#CDCD00','#CD96CD','#EEE5DE', '#EEB4B4', '#FFA07A', '#FFD700']
plt.barh(foods.index,foods.values, color=colors,height=1)
plt.show()
图表说明:依据类别销量排名,排名第一是坚果,验证了下面的假如,大家喜爱吃坚果。
论断与倡议
淘宝热卖年货: 坚果,茶叶,糕点,饼干,糖果,白酒,核桃,羊肉,海参,枸杞;
年货举荐清单(按销量):坚果、零食、糕点、饼干、茶叶、糖果、松子、红枣、蛋糕、卤味、瓜子、牛奶、核桃;
年货价格参考:66% 以上的年货价格在 0~200 元之间;
热门店铺:三只老鼠、天猫超市、百草味、良品铺子;