关于数据挖掘:spss-modeler用决策树神经网络预测ST的股票附代码数据

49次阅读

共计 1901 个字符,预计需要花费 5 分钟才能阅读完成。

原文链接:http://tecdat.cn/?p=2784

最近咱们被客户要求撰写对于决策树神经网络的钻研报告,包含一些图形和统计输入。

之前在某社区中看到一篇帖子《一张价值几十万个跌停的统计表》,次要是预测行将被 ST 的股票,尽管有些题目党,然而还有有一些参考价值的

文章中应用了净利润指标来对可能成为 ST 的股票进行排雷,那么是否有其余指标能够用机器学习的办法对该问题进行建模同时进步预测的准确度呢?

首先咱们来理解下问题的背景:

股票市场上,个别把财务状况或其余情况出现异常的上市公司的股票交易作特地解决,因而这些公司称为 ST 公司。ST 公司作为绩效程度低下的公司,而非 ST 公司为绩效程度较好的公司。

那么有没有方法提前晓得哪些股票行将被 ST 吗?

预测一家公司绩效程度的问题能够看作是二分类问题。咱们能够建设一个输入变量,其中“0”代表非 ST 公司,“1”代表 ST 公司。

而后咱们收集了上百种和公司绩效可能相干的变量作为模型的输出指标:

为了判断公司的绩效好坏,咱们别离应用了分类问题中罕用的神经网络模型和决策树模型。

1 神经网络:

l 变量重要性

l 神经网络拓普图


点击题目查阅往期内容

spss modeler 用决策树神经网络预测 ST 的股票

左右滑动查看更多

01

02

03

04

l 分类准确度

2 决策树:

l 变量重要性

l 决策树结构图:

l 准确度:

论断

从模型角度来看,神经网络模型的正确率略低于决策树模型。因而,对于民营上市公司绩效评价钻研,决策树模型要优于神经网络模型。

同时,从变量重要性来看,基于本年的 3 季报的总资产增长率,能够大抵预测出该股票是否行将被 ST。如果往年 3 季报仍然亏损很厉害,那么年报基本上也是亏损的了。


本文摘选 spss modeler 用决策树神经网络预测 ST 的股票 ,点击“ 浏览原文”获取全文残缺材料。


点击题目查阅往期内容

Python 中 TensorFlow 的长短期记忆神经网络 (LSTM)、指数挪动平均法预测股票市场和可视化 \
RNN 循环神经网络、LSTM 长短期记忆网络实现工夫序列长期利率预测 \
联合新冠疫情 COVID-19 股票价格预测:ARIMA,KNN 和神经网络工夫序列剖析 \
深度学习:Keras 应用神经网络进行简略文本分类剖析新闻组数据 \
用 PyTorch 机器学习神经网络分类预测银行客户散失模型 \
PYTHON 用 LSTM 长短期记忆神经网络的参数优化办法预测工夫序列洗发水销售数据 \
Python 用 Keras 神经网络序列模型回归拟合预测、准确度检查和后果可视化 \
R 语言深度学习卷积神经网络 (CNN)对 CIFAR 图像进行分类:训练与后果评估可视化 \
深度学习:Keras 应用神经网络进行简略文本分类剖析新闻组数据 \
Python 用 LSTM 长短期记忆神经网络对不稳固降雨量工夫序列进行预测剖析 \
R 语言深度学习 Keras 循环神经网络 (RNN) 模型预测多输入变量工夫序列 \
R 语言 KERAS 用 RNN、双向 RNNS 递归神经网络、LSTM 剖析预测温度工夫序列、IMDB 电影评分情感 \
Python 用 Keras 神经网络序列模型回归拟合预测、准确度检查和后果可视化 \
Python 用 LSTM 长短期记忆神经网络对不稳固降雨量工夫序列进行预测剖析 \
R 语言中的神经网络预测工夫序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告 \
R 语言深度学习:用 keras 神经网络回归模型预测工夫序列数据 \
Matlab 用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类 \
R 语言 KERAS 深度学习 CNN 卷积神经网络分类辨认手写数字图像数据(MNIST)\
MATLAB 中用 BP 神经网络预测人体脂肪百分比数据 \
Python 中用 PyTorch 机器学习神经网络分类预测银行客户散失模型 \
R 语言实现 CNN(卷积神经网络)模型进行回归数据分析 \
SAS 应用鸢尾花 (iris) 数据集训练人工神经网络 (ANN) 模型 \
【视频】R 语言实现 CNN(卷积神经网络)模型进行回归数据分析 \
Python 应用神经网络进行简略文本分类 \
R 语言用神经网络改良 Nelson-Siegel 模型拟合收益率曲线剖析 \
R 语言基于递归神经网络 RNN 的温度工夫序列预测 \
R 语言神经网络模型预测车辆数量工夫序列 \
R 语言中的 BP 神经网络模型剖析学生问题 \
matlab 应用长短期记忆(LSTM)神经网络对序列数据进行分类 \
R 语言实现拟合神经网络预测和后果可视化 \
用 R 语言实现神经网络预测股票实例 \
应用 PYTHON 中 KERAS 的 LSTM 递归神经网络进行工夫序列预测 \
python 用于 NLP 的 seq2seq 模型实例: 用 Keras 实现神经网络机器翻译 \
用于 NLP 的 Python:应用 Keras 的多标签文本 LSTM 神经网络分类

正文完
 0