汇合
应用二分搜寻树实现不可反复的汇合
创立Set接口以及实现类。
public interface Set<E> {
void add(E e);
void remove(E e);
boolean contains(E e);
int getSize();
boolean isEmpty();
}
public class BSTSet<E extends Comparable<E>> implements Set<E> {
private BST<E> bst;
public BSTSet() {
bst = new BST<>();
}
@Override
public void add(E e) {
bst.add(e);
}
@Override
public void remove(E e) {
bst.remove(e);
}
@Override
public boolean contains(E e) {
return bst.contains(e);
}
@Override
public int getSize() {
return bst.size();
}
@Override
public boolean isEmpty() {
return bst.isEmpty();
}
}
应用链表来实现不可反复的汇合
public class LinkedListSet<E> implements Set<E> {
private LinkedList<E> linkedList;
public LinkedListSet() {
linkedList = new LinkedList<>();
}
@Override
public void add(E e) {
//判断是否存在以后元素e
if (!linkedList.contains(e)){
linkedList.addFirst(e);
}
}
@Override
public void remove(E e) {
linkedList.removeElement(e);
}
@Override
public boolean contains(E e) {
return linkedList.contains(e);
}
@Override
public int getSize() {
return linkedList.getSize();
}
@Override
public boolean isEmpty() {
return linkedList.isEmpty();
}
}
汇合复杂度剖析
操作 | LinkedListSet | BSTSet |
---|---|---|
增 add | O(n) | O(logn) |
查 contains | O(n) | O(logn) |
删 remove | O(n) | O(logn) |
发表回复