关于后端:Tugraph-Analytics图计算快速上手之紧密中心度算法md

52次阅读

共计 4612 个字符,预计需要花费 12 分钟才能阅读完成。

作者:张武科

概述

严密核心度(Closeness Centrality)计量了一个节点到其余所有节点的紧密性,即该节点到其余节点的间隔的倒数;节点对应的值越高示意紧密性越好,可能在图中流传信息的能力越强,可用以掂量信息流入或流出该节点的能力,多用与社交网络中要害节点挖掘等场景。

算法介绍

对于图中一个给定节点,紧密性核心性是该节点到其余所有节点的最小间隔和的倒数:

其中,u 示意待计算严密核心度的节点,d(u, v)示意节点 u 到节点 v 的最短门路间隔;理论场景中,更多地应用归一化后的严密核心度,即计算指标节点到其余节点的均匀间隔的倒数:

其中,n 示意图中节点数。

算法实现

首先,基于 AlgorithmUserFunction 接口实现ClosenessCentrality,如下:

@Description(name = "closeness_centrality", description = "built-in udga for ClosenessCentrality")
public class ClosenessCentrality implements AlgorithmUserFunction<Long, Long> {

    private AlgorithmRuntimeContext context;
    private long sourceId;

    @Override
    public void init(AlgorithmRuntimeContext context, Object[] params) {
        this.context = context;
        if (params.length != 1) {throw new IllegalArgumentException("Only support one arguments, usage: func(sourceId)");
        }
        this.sourceId = ((Number) params[0]).longValue();}

    @Override
    public void process(RowVertex vertex, Iterator<Long> messages) {List<RowEdge> edges = context.loadEdges(EdgeDirection.OUT);
        if (context.getCurrentIterationId() == 1L) {context.sendMessage(vertex.getId(), 1L);
            context.sendMessage(sourceId, 1L);
        } else if (context.getCurrentIterationId() == 2L) {context.updateVertexValue(ObjectRow.create(0L, 0L));
            if (vertex.getId().equals(sourceId)) {
                long vertexNum = -2L;
                while (messages.hasNext()) {messages.next();
                    vertexNum++;
                }
                // 统计节点数
                context.updateVertexValue(ObjectRow.create(0L, vertexNum));
                // 向邻接点发送与指标点间隔
                sendMessageToNeighbors(edges, 1L);
            }
        } else {if (vertex.getId().equals(sourceId)) {long sum = (long) vertex.getValue().getField(0, LongType.INSTANCE);
                while (messages.hasNext()) {sum += messages.next();
                }
                long vertexNum = (long) vertex.getValue().getField(1, LongType.INSTANCE);
                // 记录最短距离和
                context.updateVertexValue(ObjectRow.create(sum, vertexNum));
            } else {if (((long) vertex.getValue().getField(1, LongType.INSTANCE)) < 1) {Long meg = messages.next();
                    context.sendMessage(sourceId, meg);
                    // 向邻接点发送与指标点间隔
                    sendMessageToNeighbors(edges, meg + 1);
                    // 标记该点已向指标点发送过音讯
                    context.updateVertexValue(ObjectRow.create(0L, 1L));
                }
            }
        }
    }

    private void sendMessageToNeighbors(List<RowEdge> outEdges, Object message) {for (RowEdge rowEdge : outEdges) {context.sendMessage(rowEdge.getTargetId(), message);
        }
    }

    @Override
    public void finish(RowVertex vertex) {if (vertex.getId().equals(sourceId)) {long len = (long) vertex.getValue().getField(0, LongType.INSTANCE);
            long num = (long) vertex.getValue().getField(1, LongType.INSTANCE);
            context.take(ObjectRow.create(vertex.getId(), (double) num / len));
        }
    }

    @Override
    public StructType getOutputType() {
        return new StructType(new TableField("id", LongType.INSTANCE, false),
            new TableField("cc", DoubleType.INSTANCE, false)
        );
    }
}

而后,可在 DSL 中引入自定义算法,间接调用应用,语法模式如下:

CREATE Function closeness_centrality AS 'com.antgroup.geaflow.dsl.udf.ClosenessCentrality';

INSERT INTO tbl_result
CALL closeness_centrality(1) YIELD (vid, ccValue)
RETURN vid, ROUND(ccValue, 3)
;

示例示意,计算图中 id = 1节点的严密核心度。

算法运行

在运行算法之前,要结构算法运行的底图数据。

图定义

首先,进行图定义:

CREATE GRAPH modern (
    Vertex person (
      id bigint ID,
      name varchar,
      age int
    ),
    Vertex software (
      id bigint ID,
      name varchar,
      lang varchar
    ),
    Edge knows (
      srcId bigint SOURCE ID,
      targetId bigint DESTINATION ID,
      weight double
    ),
    Edge created (
      srcId bigint SOURCE ID,
      targetId bigint DESTINATION ID,
      weight double
    )
) WITH (
    storeType='rocksdb',
    shardNum = 1
);

图构建

实现图定义之后,导入点边数据,结构数据底图:

CREATE TABLE modern_vertex (
  id varchar,
  type varchar,
  name varchar,
  other varchar
) WITH (
  type='file',
  geaflow.dsl.file.path = 'resource:///data/modern_vertex.txt'
);

CREATE TABLE modern_edge (
  srcId bigint,
  targetId bigint,
  type varchar,
  weight double
) WITH (
  type='file',
  geaflow.dsl.file.path = 'resource:///data/modern_edge.txt'
);

INSERT INTO modern.person
SELECT cast(id as bigint), name, cast(other as int) as age
FROM modern_vertex WHERE type = 'person'
;

INSERT INTO modern.software
SELECT cast(id as bigint), name, cast(other as varchar) as lang
FROM modern_vertex WHERE type = 'software'
;

INSERT INTO modern.knows
SELECT srcId, targetId, weight
FROM modern_edge WHERE type = 'knows'
;

INSERT INTO modern.created
SELECT srcId, targetId, weight
FROM modern_edge WHERE type = 'created'
;

计算输入

最初,在底图数据上实现算法计算和后果输入;

CREATE TABLE tbl_result (
  vid int,
    ccValue double
) WITH (
    type='file',
    geaflow.dsl.file.path='/tmp/result'
);

CREATE Function closeness_centrality AS 'com.antgroup.geaflow.dsl.udf.ClosenessCentrality';

USE GRAPH modern;

INSERT INTO tbl_result
CALL closeness_centrality(1) YIELD (vid, ccValue)
RETURN vid, ROUND(ccValue, 3)
;

运行示例

  • input

    // vertex
    1,person,marko,29
    2,person,vadas,27
    3,software,lop,java
    4,person,josh,32
    5,software,ripple,java
    6,person,peter,35
    
    // edge
    1,3,created,0.4
    1,2,knows,0.5
    1,4,knows,1.0
    4,3,created,0.4
    4,5,created,1.0
    3,6,created,0.2
  • output

    // result
    1,0.714

结语

在本篇文章中咱们介绍了如何在 TuGraph Analytics 上实现严密核心度算法,如果你感觉比拟乏味,欢送关注咱们的社区(https://github.com/TuGraph-family/tugraph-analytics)。开源不易,如果你感觉还不错,能够给咱们 star 反对一下~


GeaFlow(品牌名 TuGraph-Analytics) 已正式开源,欢送大家关注!!!

欢送给咱们 Star 哦!

Welcome to give us a Star!

GitHub👉https://github.com/TuGraph-family/tugraph-analytics

更多精彩内容,关注咱们的博客 https://geaflow.github.io/

正文完
 0