共计 1137 个字符,预计需要花费 3 分钟才能阅读完成。
1. data 角色
1.1 data 多层角色
data_content,data_hot, data_warm, data_cold, data_frozen
一个节点如果设置了其中一个 data 的 role, 就不能再作为通用的 data 角色了。
如 node.roles: [data_content, data_hot, data_warm]
能够,而 node.roles: [data, data_hot]
就不对了~
In a multi-tier deployment architecture, you use specialized data roles to assign data nodes to specific tiers: data_content,data_hot, data_warm, data_cold, or data_frozen. A node can belong to multiple tiers, but a node that has one of the specialized data roles cannot have the generic data role.
1.2 data_content
node.roles: [data_content]
data_content
角色的节点,你优先要思考 query 性能,而不是 IO 吞吐量;
Content tier nodes are usually optimized for query performance—they prioritize processing power over IO throughput so they can process complex searches and aggregations and return results quickly.
1.3 data_hot
node.roles: [data_hot]
- hot 层,可保留最近、最常搜寻的工夫序列数据。
- 要求读写快,如 ssd 硬盘。
1.4 data_warm
node.roles: [data_warm]
- 和煦层通常保留最近几周的数据;
- 工夫序列上,过了 hot 的领域;
- 更新依然容许的,但可能不频繁;
- 节点性能能够比 hot 层的差些
1.5 data_cold
node.roles: [data_cold]
- 扔可搜寻;
不须要正本;
Unlike regular indices, these fully mounted indices don’t require replicas for reliability. In the event of a failure, they can recover data from the underlying snapshot instead.
- 较便宜的硬件、较少的磁盘 (正本无)
1.6 data_frozen
- 可搜寻
须要一个快照库;
The frozen tier requires a snapshot repository