共计 589 个字符,预计需要花费 2 分钟才能阅读完成。
请您勇敢地去翻译和改进翻译。虽然我们追求卓越,但我们并不要求您做到十全十美,因此请不要担心因为翻译上犯错——在大部分情况下,我们的服务器已经记录所有的翻译,因此您不必担心会因为您的失误遭到无法挽回的破坏。(改编自维基百科)
通过在 Python 中使用 XGBoost 提前停止来避免过度拟合
如何在 Python 中调优 XGBoost 的多线程支持
如何配置梯度提升算法
在 Python 中使用 XGBoost 进行梯度提升的数据准备
如何使用 scikit-learn 在 Python 中开发您的第一个 XGBoost 模型
如何在 Python 中使用 XGBoost 评估梯度提升模型
在 Python 中使用 XGBoost 的特征重要性和特征选择
浅谈机器学习的梯度提升算法
应用机器学习的 XGBoost 简介
如何在 macOS 上为 Python 安装 XGBoost
如何在 Python 中使用 XGBoost 保存梯度提升模型
从梯度提升开始,比较 165 个数据集上的 13 种算法
在 Python 中使用 XGBoost 和 scikit-learn 进行随机梯度提升
如何使用 Amazon Web Services 在云中训练 XGBoost 模型
在 Python 中使用 XGBoost 调整梯度提升的学习率
如何在 Python 中使用 XGBoost 调整决策树的数量和大小
如何在 Python 中使用 XGBoost 可视化梯度提升决策树
在 Python 中开始使用 XGBoost 的 7 步迷你课程
正文完