关于算法:算法tree二叉树的最大深度

题目地址

我的解法

    /**
     * 2ms 21.07
     * 41M 33.17
     * 其实是广度优先搜寻
     * 切入点是一层一层看,依据以后层构建下一层。
     * */
    public static int maxDepth(TreeNode root) {
        if (null == root) {
            return 0;
        }
        int deep = 1;
        List<TreeNode> curLevel = new ArrayList<>();
        curLevel.add(root);
        List<TreeNode> nextLevel = null;
        while (hasNextLevel(curLevel)) {
            nextLevel = new ArrayList<>();
            for (TreeNode cur : curLevel) {
                if (null != cur) {
                    nextLevel.add(cur.left);
                    nextLevel.add(cur.right);
                }
            }
            curLevel = nextLevel;
            deep ++;
        }
        return deep;
    }

官网-广度优先搜寻

    /**
     * 官网的广度优先搜寻
     * 使用了Queue @see MyQueue
     * */
    public static int maxDepth_l1(TreeNode root) {
        if (null == root) {
            return 0;
        }

        Queue<TreeNode> curLevel = new LinkedList<>();
        curLevel.offer(root);

        int deep = 0;
        while (!curLevel.isEmpty()) {
            int size = curLevel.size();//TODO 固定poll次数
            while (size > 0) {
                TreeNode curNode = curLevel.poll();
                if (curNode == null) {
                    continue;
                }
                if (curNode.left != null) {
                    curLevel.offer(curNode.left);
                }
                if (curNode.right != null) {
                    curLevel.offer(curNode.right);
                }
                size --;
            }

//            Queue<TreeNode> curLevelTemp  = curLevel;
//            for (TreeNode cur : curLevelTemp) {java.util.ConcurrentModificationException
//                if (cur == null) {
//                    continue;
//                }
//                if (cur.left != null) {
//                    curLevel.offer(cur.left);
//                }
//                if (cur.right != null) {
//                    curLevel.offer(cur.right);
//                }
//                curLevel.poll();
//            }
            deep ++;
        }
        return deep;
    }

官网-深度优先搜寻

    /**
     * 官网深度优先搜寻
     * 使用递归
     * 如果咱们晓得了左子树和右子树的最大深度 l 和 r,那么该二叉树的最大深度即为
     *
     * max(l,r) + 1
     *
     * 而左子树和右子树的最大深度又能够以同样的形式进行计算。
     * */
    public static int maxDepth_l2(TreeNode root) {
        //    3
        //   / \
        //  9  20
        //    /  \
        //   15   7
        if (root == null) {
            return 0;
        } else {
            int maxLeft = maxDepth_l2(root.left);//1
            int maxRight = maxDepth_l2(root.right);
            return Math.max(maxLeft, maxRight) + 1;
        }
    }

拓展-DFS&BFS

深度优先搜索算法DFS

1、算法步骤:
——拜访顶点v;
——顺次从v的未被拜访的邻接点登程,对图进行深度优先遍历;直至图中和v有门路相通的顶点都被拜访;
——若此时图中尚有顶点未被拜访,则从一个未被拜访的顶点登程,从新进行深度优先遍历,直到图中所有顶点均被拜访过为止
2、DFS属于自觉搜寻。深度优先搜寻是图论中的经典算法,利用深度优先搜索算法能够产生指标图的相应拓扑排序表,利用拓扑排序表能够不便的解决很多相干的图论问题,如最大门路问题等等。个别用堆数据结构来辅助实现DFS算法。

广度优先搜索算法BFS

1、算法步骤:
——首先将根节点放入队列中;
——从队列中取出第一个节点,并测验它是否为指标。如果找到指标,则完结搜查并回传后果。否则将它所有尚未测验过的间接子节点退出队列中;
——若队列为空,示意整张图都查看过了——亦即图中没有欲搜查的指标。完结搜查并回传“找不到指标”;
——反复步骤2
2、BFS同样属于自觉搜寻。简略的说,BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。如果所有节点均被拜访,则算法停止。个别用队列数据结构来辅助实现BFS算法。

拓展API-Queue

个性

1、线性表/线性队列
2、FIFO
3、表头出,表尾加

implements

        Queue<String> queue_ArrayBlockingQueue = new ArrayBlockingQueue<>(10);
        Queue<String> queue_ArrayDeque = new ArrayDeque<>();
        Queue<String> queue_ConcurrentLinkedDeque = new ConcurrentLinkedDeque<>();
        Queue<String> queue_LinkedBlockingDeque = new LinkedBlockingDeque<>();
        Queue<String> queue_LinkedList = new LinkedList<>();

methods

method 个性
add 队列尾插入,队列满时抛出IllegalStateException
offer 队列尾插入,队列满时返回false
remove 移除并返回头部元素,队列空时,抛出NoSuchElementException
pool 移除并返回头部元素,队列空时,返回null
element 查看队列头元素,队列空时,抛出NoSuchElementException
peek 查看队列头元素,队列空时,返回null

code

    public static void main(String[] args) {
        Queue<String> queue_ArrayBlockingQueue = new ArrayBlockingQueue<>(10);
        Queue<String> queue_ArrayDeque = new ArrayDeque<>();
        Queue<String> queue_ConcurrentLinkedDeque = new ConcurrentLinkedDeque<>();
        Queue<String> queue_LinkedBlockingDeque = new LinkedBlockingDeque<>();
        Queue<String> queue_LinkedList = new LinkedList<>();
        System.out.println("++++++++++++++++++++++++++");

        //add 表尾插 ——>[1,2,3]
        //队列满时,抛出IllegalStateException
        Queue<Integer> queue_add = new ArrayBlockingQueue<>(2);
        queue_add.add(1);
        queue_add.add(2);
        try {
            queue_add.add(3);
        } catch (Exception e) {
            System.out.println(e);
        }
        for (Integer q : queue_add) {
            System.out.println(q);
        }

        try {
            Queue<Integer> queue_LinkedList_add = new LinkedList<>();
            for (int i = 0; i < 1000000; i++) {
                queue_LinkedList_add.add(i);
            }
            System.out.println(queue_LinkedList_add.size());
        } catch (Exception e) {
            System.out.println(e);
        }

        System.out.println("++++++++++++++++++++++++++");

        //offer 表尾插 ——>[1,2,3,4,5,6]
        //队列满时,返回false
        Queue<Integer> queue_offer = new ArrayBlockingQueue<>(4);
        System.out.println(queue_offer.offer(1));
        System.out.println(queue_offer.offer(2));
        System.out.println(queue_offer.offer(3));
        System.out.println(queue_offer.offer(4));
        try {
            System.out.println(queue_offer.offer(5));
        } catch (Exception e) {
            System.out.println(e);
        }
        for (Integer q : queue_offer) {
            System.out.println(q);
        }

        try {
            Queue<Integer> queue_LinkedList_offer = new LinkedList<>();
            for (int i = 0; i < 1000000; i++) {
                if (!queue_LinkedList_offer.add(i)) {
                    System.out.println("offer false");
                }
            }
            System.out.println(queue_LinkedList_offer.size());
        } catch (Exception e) {
            System.out.println(e);
        }
        System.out.println("++++++++++++++++++++++++++");

        //remove 移除并返回队列头部元素
        //队列空时,抛出NoSuchElementException
        Queue<Integer> queue_LinkedList_remove = new LinkedList<>();
        for (int i = 0; i < 6; i++) {
            queue_LinkedList_remove.offer(i);
        }
        for (int i = 0; i < 7; i++) {
            try {
                System.out.println(queue_LinkedList_remove.remove());
            } catch (Exception e) {
                System.out.println(i + " e = " + e);
            }
        }
        System.out.println("++++++++++++++++++++++++++");

        //poll 移除并返回队列头部元素
        //队列空时,返回null
        Queue<Integer> queue_poll = new LinkedList<>();
        for (int i = 0; i < 10; i++) {
            queue_poll.offer(i);
        }
        for (int i = 0; i < 11; i++) {
            try {
                System.out.println(queue_poll.poll());
            } catch (Exception e) {
                System.out.println(i + " e = " + e);
            }
        }
        System.out.println("++++++++++++++++++++++++++");


        //element 返回队列头部元素
        //队列空时,抛出NoSuchElementException
        Queue<Integer> queue_element = new LinkedList<>();
        queue_element.offer(1);
        queue_element.offer(2);
        System.out.println(queue_element.element());
        System.out.println(queue_element.poll());
        System.out.println(queue_element.element());
        System.out.println(queue_element.poll());
        try {
            System.out.println(queue_element.element());
        } catch (Exception e) {
            System.out.println(e);
        }
        System.out.println("++++++++++++++++++++++++++");


        //peek 返回队列头部元素
        //队列空时,返回null
        Queue<Integer> queue_peek = new LinkedList<>();
        for (int i = 0; i < 3; i++) {
            queue_peek.offer(i);
        }
        for (int i = 0; i < 4; i++) {
            try {
                System.out.println(queue_peek.peek());
                System.out.println(queue_peek.poll());
            } catch (Exception e) {
                System.out.println(i + " e = " + e);
            }
        }
        System.out.println("++++++++++++++++++++++++++");
    }

评论

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

这个站点使用 Akismet 来减少垃圾评论。了解你的评论数据如何被处理