共计 4475 个字符,预计需要花费 12 分钟才能阅读完成。
介绍
LinkedList 是一个以双向链表实现的 List,它除了作为 List 使用,还可以作为队列或者栈来使用,它是怎么实现的呢?让我们一起来学习吧。
继承体系
通过继承体系,我们可以看到 LinkedList 不仅实现了 List 接口,还实现了 Queue 和 Deque 接口,所以它既能作为 List 使用,也能作为双端队列使用,当然也可以作为栈使用。
源码分析
主要属性
// 元素个数
transient int size = 0;
// 链表首节点
transient Node<E> first;
// 链表尾节点
transient Node<E> last;
主要内部类
典型的双链表结构
private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;
Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
主要的构造方法
public LinkedList() {}
public LinkedList(Collection<? extends E> c) {this();
addAll(c);
}
是一个无界的队列
增加原属
作为一个双端队列,添加元素主要有两种,一种是在队列尾部添加元素,一种是在队列首部添加元素,这两种形式在 LinkedList 中主要是通过下面两个方法来实现的。
// 从队列首添加元素
private void linkFirst(E e) {
// 首节点
final Node<E> f = first;
// 创建新节点,新节点的 next 是首节点
final Node<E> newNode = new Node<>(null, e, f);
// 让新节点作为新的首节点
first = newNode;
// 判断是不是第一个添加的元素
// 如果是就把 last 也置为新节点
// 否则把原首节点的 prev 指针置为新节点
if (f == null)
last = newNode;
else
f.prev = newNode;
// 元素个数加 1
size++;
// 修改次数加 1,说明这是一个支持 fail-fast 的集合
modCount++;
}
// 从队列尾添加元素
void linkLast(E e) {
// 队列尾节点
final Node<E> l = last;
// 创建新节点,新节点的 prev 是尾节点
final Node<E> newNode = new Node<>(l, e, null);
// 让新节点成为新的尾节点
last = newNode;
// 判断是不是第一个添加的元素
// 如果是就把 first 也置为新节点
// 否则把原尾节点的 next 指针置为新节点
if (l == null)
first = newNode;
else
l.next = newNode;
// 元素个数加 1
size++;
// 修改次数加 1
modCount++;
}
public void addFirst(E e) {linkFirst(e);
}
public void addLast(E e) {linkLast(e);
}
// 作为无界队列,添加元素总是会成功的
public boolean offerFirst(E e) {addFirst(e);
return true;
}
public boolean offerLast(E e) {addLast(e);
return true;
}
典型的双链表在首尾添加元素的方法. 上面是作为双端队列来看,它的添加元素分为首尾添加元素.
作为 List,是要支持在中间添加元素的,主要是通过下面这个方法实现的。
// 在节点 succ 之前添加元素
void linkBefore(E e, Node<E> succ) {
// succ 是待添加节点的后继节点
// 找到待添加节点的前置节点
final Node<E> pred = succ.prev;
// 在其前置节点和后继节点之间创建一个新节点
final Node<E> newNode = new Node<>(pred, e, succ);
// 修改后继节点的前置指针指向新节点
succ.prev = newNode;
// 判断前置节点是否为空
// 如果为空,说明是第一个添加的元素,修改 first 指针
// 否则修改前置节点的 next 为新节点
if (pred == null)
first = newNode;
else
pred.next = newNode;
// 修改元素个数
size++;
// 修改次数加 1
modCount++;
}
// 寻找 index 位置的节点
Node<E> node(int index) {
// 因为是双链表
// 所以根据 index 是在前半段还是后半段决定从前遍历还是从后遍历
// 这样 index 在后半段的时候可以少遍历一半的元素
if (index < (size >> 1)) {
// 如果是在前半段
// 就从前遍历
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
// 如果是在后半段
// 就从后遍历
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
// 在指定 index 位置处添加元素
public void add(int index, E element) {
// 判断是否越界
checkPositionIndex(index);
// 如果 index 是在队列尾节点之后的一个位置
// 把新节点直接添加到尾节点之后
// 否则调用 linkBefore() 方法在中间添加节点
if (index == size)
linkLast(element);
else
linkBefore(element, node(index));
}
在队列首尾添加元素很高效,时间复杂度为 O(1)。
在中间添加元素比较低效,首先要先找到插入位置的节点,再修改前后节点的指针,时间复杂度为 O(n)。
删除元素
作为双端队列,删除元素也有两种方式,一种是队列首删除元素,一种是队列尾删除元素。
作为 List,又要支持中间删除元素,所以删除元素一个有三个方法,分别如下。
// 删除首节点
private E unlinkFirst(Node<E> f) {
// 首节点的元素值
final E element = f.item;
// 首节点的 next 指针
final Node<E> next = f.next;
// 添加首节点的内容,协助 GC
f.item = null;
f.next = null; // help GC
// 把首节点的 next 作为新的首节点
first = next;
// 如果只有一个元素,删除了,把 last 也置为空
// 否则把 next 的前置指针置为空
if (next == null)
last = null;
else
next.prev = null;
// 元素个数减 1
size--;
// 修改次数加 1
modCount++;
// 返回删除的元素
return element;
}
// 删除尾节点
private E unlinkLast(Node<E> l) {
// 尾节点的元素值
final E element = l.item;
// 尾节点的前置指针
final Node<E> prev = l.prev;
// 清空尾节点的内容,协助 GC
l.item = null;
l.prev = null; // help GC
// 让前置节点成为新的尾节点
last = prev;
// 如果只有一个元素,删除了把 first 置为空
// 否则把前置节点的 next 置为空
if (prev == null)
first = null;
else
prev.next = null;
// 元素个数减 1
size--;
// 修改次数加 1
modCount++;
// 返回删除的元素
return element;
}
// 删除指定节点 x
E unlink(Node<E> x) {
// x 的元素值
final E element = x.item;
// x 的前置节点
final Node<E> next = x.next;
// x 的后置节点
final Node<E> prev = x.prev;
// 如果前置节点为空
// 说明是首节点,让 first 指向 x 的后置节点
// 否则修改前置节点的 next 为 x 的后置节点
if (prev == null) {first = next;} else {
prev.next = next;
x.prev = null;
}
// 如果后置节点为空
// 说明是尾节点,让 last 指向 x 的前置节点
// 否则修改后置节点的 prev 为 x 的前置节点
if (next == null) {last = prev;} else {
next.prev = prev;
x.next = null;
}
// 清空 x 的元素值,协助 GC
x.item = null;
// 元素个数减 1
size--;
// 修改次数加 1
modCount++;
// 返回删除的元素
return element;
}
// remove 的时候如果没有元素抛出异常
public E removeFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return unlinkFirst(f);
}
// remove 的时候如果没有元素抛出异常
public E removeLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return unlinkLast(l);
}
// poll 的时候如果没有元素返回 null
public E pollFirst() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}
// poll 的时候如果没有元素返回 null
public E pollLast() {
final Node<E> l = last;
return (l == null) ? null : unlinkLast(l);
}
// 删除中间节点
public E remove(int index) {
// 检查是否越界
checkElementIndex(index);
// 删除指定 index 位置的节点
return unlink(node(index));
}
在队列首尾删除元素很高效,时间复杂度为 O(1)。
在中间删除元素比较低效,首先要找到删除位置的节点,再修改前后指针,时间复杂度为 O(n)。
栈
LinkedList 是双端队列,双端队列可以作为栈使用.
栈的特性是 LIFO(Last In First Out),所以作为栈使用也很简单,添加删除元素都只操作队列首节点即可。
public void push(E e) {addFirst(e);
}
public E pop() {return removeFirst();
}
总结
- LinkedList 是一个以双链表实现的 List;
- LinkedList 还是一个双端队列,具有队列、双端队列、栈的特性;
- LinkedList 在队列首尾添加、删除元素非常高效,时间复杂度为 O(1);
- LinkedList 在中间添加、删除元素比较低效,时间复杂度为 O(n);
- LinkedList 不支持随机访问,所以访问非队列首尾的元素比较低效;
- LinkedList 在功能上等于 ArrayList + ArrayDeque;
正文完
发表至: java
2019-08-10