UnityShader之Glitch-Art效果

43次阅读

共计 3366 个字符,预计需要花费 9 分钟才能阅读完成。

【博物纳新】是 UWA 旨在为开发者推荐新颖、易用、有趣的开源项目,帮助大家在项目研发之余发现世界上的热门项目、前沿技术或者令人惊叹的视觉效果,并探索将其应用到自己项目的可行性。很多时候,我们并不知道自己想要什么,直到某一天我们遇到了它。

更多精彩内容请关注:lab.uwa4d.com


导读

电视信号受到干扰,产生画面抖动、色彩漂移等现象,这种电子设备成像故障产生的效果,被应用在赛博朋克等科幻类型的影视游戏作品中。逐渐成为一种特有的风格艺术:故障艺术(Glitch Art)。育碧在其 3A 大作《看门狗》系列中,频繁的采用了这种表现手法。日本知名 Unity 大师 Keijiro 的开源库项目 KinoGlitch 模拟了这一风格。

该项目主要模拟了两种类型的效果:Analog Glitch 和 Digital Glitch。

(无特效时场景)

开源库链接:https://lab.uwa4d.com/lab/5b5d1c86d7f10a201feaa37f


Analog Glitch

这种 Glitch 效果类型可以分为以下四种效果:

1、Scan Line Jitter

(_scanLineJitter 设定为 0.5 时 效果图)

这种效果是以像素为单位横向拉伸不同程度地拉伸物体,从而形成抖动。可以通过后处理的方式来实现。在 Shader 中进行采样的时候,采样点为原图位置横向偏移一些的点。可以通过一个 float 类型的变量来控制偏移量。

(_scanLineJitter 设定为 1 时 效果图)

这个效果的实现重点在于采样的随机性,这样抖动的效果更加逼真。并且偏移量处在一个限定的范围内,即使抖动也能基本看出原本的模型样貌。作者设计了一个较为复杂运算来模拟随机效果,并将偏移量限定在特定范围内:

//AnalogGlitch.cs 中设定变量用于控制偏移量
[SerializeField, Range(0, 1)]
float _scanLineJitter = 0;

//AnalogGlitch.shader
// 计算具体偏移量
float jitter = nrand(v, _Time.x) * 2 - 1;
jitter *= step(_ScanLineJitter.y, abs(jitter)) * _ScanLineJitter.x;

float nrand(float x, float y){return frac(sin(dot(float2(x, y), float2(12.9898, 78.233))) * 43758.5453);
}
// 根据偏移量进行采样
half4 src1 = tex2D(_MainTex, frac(float2(u + jitter, v)));

2、Horizontal Shake

这种效果用于进行横向的抖动,通过设定一个 float 类型的偏移量。绘制时根据偏移量进行采样即可:

//AnalogGlitch.cs 中设定变量用于控制偏移量
_material.SetFloat("_HorizontalShake", _horizontalShake * 0.2f);
//AnalogGlitch.shader
// 计算具体偏移
float shake = (nrand(_Time.x, 2) - 0.5) * _HorizontalShake;

float nrand(float x, float y){return frac(sin(dot(float2(x, y), float2(12.9898, 78.233))) * 43758.5453);
// 根据偏移量进行采样
half4 src1 = tex2D(_MainTex, frac(float2(u + shake, v)));

3、Color Drift

(效果图)

这种效果主要用于模拟机器故障时颜色显示出现错乱、偏移、重影的情况。可以通过讲 RGB 通道进行分离重组的方式进行实现。

//AnalogGlitch.cs 中设定变量用于控制偏移量
var cd = new Vector2(_colorDrift * 0.04f, Time.time * 606.11f);
_material.SetVector("_ColorDrift", cd);
//AnalogGlitch.shader
// 计算具体偏移
float drift = sin(jump + _ColorDrift.y) * _ColorDrift.x;

// 采样原图 & 根据偏移量进行采样
half4 src1 = tex2D(_MainTex, frac(float2(u , v)));
half4 src2 = tex2D(_MainTex, frac(float2(u + drift, v)));

// 将上述的采样结果进行混合
return half4(src1.r, src2.g, src1.b, 1);

4、Vertical Jump

(效果图)

这种效果用于模拟机器故障时,出现纵向跳动的的情况。这种情况的模拟比较简单,可以通过设定一个纵向偏移量,对原图进行采样即可:

(效果图)

在此基础上,可以通过插值,来实现采样过程中只采集局部图片的效果:

(进行插值后效果图)

具体代码如下:

//AnalogGlitch.cs 中设定变量用于控制偏移量
_verticalJumpTime += Time.deltaTime * _verticalJump * 11.3f;
 var vj = new Vector2(_verticalJump, _verticalJumpTime);
_material.SetVector("_VerticalJump", vj);

//AnalogGlitch.shader
// 进行插值
float jump = lerp(v, frac(v + _VerticalJump.y), _VerticalJump.x);
// 根据偏移量进行采样
half4 src1 = tex2D(_MainTex, frac(float2(u, jump)));

可以将上述四种实现效果进行组合:

half4 src1 = tex2D(_MainTex, frac(float2(u + jitter + shake, jump)));
half4 src2 = tex2D(_MainTex, frac(float2(u + jitter + shake + drift, jump)));
return half4(src1.r, src2.g, src1.b, 1);

从而得到一些复杂的效果:

(效果图)


Digital Glitch: Block Damage


(效果图)

这种类型效果是在图像上显示一定大小、颜色的色块,用于模拟电子设备故障部分区域无法正常显示的效果。

可以通过一个噪声图像来辅助制作。首先随机生成一个噪声图像:

void UpdateNoiseTexture(){var color = RandomColor();
for (var y = 0; y < _noiseTexture.height; y++){for (var x = 0; x < _noiseTexture.width; x++){if (Random.value > 0.89f)
      color = RandomColor();
    _noiseTexture.SetPixel(x, y, color);
    }
  }
   _noiseTexture.Apply();}

设定一个 float 类型的变量_intensity 用来控制效果力度。

作者在片元着色器中设计了一套运算,保证当_intensity= 1 时,图像全部区域产生该效果:

反之,_intensity= 0 时,没有效果。

具体采样包括:正常图像、前一次刷新时图像、噪声图像。通过这三种图像采集的得到的区域进行混合叠加得到效果:


性能测评

我们对项目进行优化处理,将场景中模型使用的 Standard Shader 全部替换为 Diffuse Shader。(大家在使用案例测试时要注意其 Standard Shader 带来的巨大开销)。

使用华为 8Plus,开启多线程渲染,同时开启两个效果后,用 GOT Online 测试了下性能,FPS 可达 30 帧左右。

读者可以尝试将该效果应用于移动端。应用时可以进一步优化,例如简化算法,减少使用 sin、dot、pow 等函数,采用其他的算法来模拟随机等。


快用 UWA Lab 合辑 Mark 好项目!

今天的推荐就到这儿啦,或者它可直接使用,或者它需要您的润色,或者它启发了您的思路 ……

请不要吝啬您的点赞和转发,让我们知道我们在做对的事。当然如果您可以留言给出宝贵的意见,我们会越做越好。

正文完
 0