sonic-orch调度系统之orch

39次阅读

共计 7424 个字符,预计需要花费 19 分钟才能阅读完成。

​ sonic orchagent 线程的调度最小单位是 Consumer。Consumer 是在 epoll 事件 Selectable 的基础上的进一步封装,每一次发生 epoll 事件会触发 orchagent 进行一次调度。orch 是资源的集合,一个 orch 可以包含多个 Consumer,比如 acl orch 会监听多个 redistable。

class Executor

// Design assumption
// 1. one Orch can have one or more Executor
// 2. one Executor must belong to one and only one Orch
// 3. Executor will hold an pointer to new-ed selectable, and delete it during dtor
// 设计假设:// 1. 一个 orch 可以拥有一个或者多个 Executor
// 2. 一个 Executor 必须属于一个 orch 而且仅仅属于一个 orch
// 3. Executor 有一个指针指向一个 new 出来的 Selectable 结构,必须在析构函数中将其删除,否则会泄漏
class Executor : public Selectable
{
public:
    Executor(Selectable *selectable, Orch *orch)
        : m_selectable(selectable)
        , m_orch(orch)
    { }

    virtual ~Executor() { delete m_selectable;}

    // Decorating Selectable
    int getFd() override { return m_selectable->getFd(); }
    void readData() override { m_selectable->readData(); }
    bool hasCachedData() override { return m_selectable->hasCachedData(); }
    bool initializedWithData() override { return m_selectable->initializedWithData(); }
    void updateAfterRead() override { m_selectable->updateAfterRead(); }
    Orch * getorch()   { return m_orch;}
    // Disable copying
    Executor(const Executor&) = delete;
    Executor& operator=(const Executor&) = delete;

    // Execute on event happening
    // execute 执行事件,drain 是一个辅助函数
    virtual void execute() {}
    virtual void drain() {}

protected:
    Selectable *m_selectable;// 指向 new 出来的 Selectable
    Orch *m_orch;// 指向一个 orch

    // Get the underlying selectable 获取指向的 Selectable
    Selectable *getSelectable() const { return m_selectable;}
};

class Executor 只是一个中间的派生类,orch 直接使用的是 class Consumer 和 class ExecutableTimer。

class Consumer

消费者类一般用于处理 app_db 的订阅事件,对于 asic_db 一般是处理 syncd 的应答事件。

typedef std::pair<std::string, std::string> FieldValueTuple;
#define fvField std::get<0>
#define fvValue std::get<1>
typedef std::tuple<std::string, std::string, std::vector<FieldValueTuple> > KeyOpFieldsValuesTuple;
#define kfvKey    std::get<0>
#define kfvOp     std::get<1>
#define kfvFieldsValues std::get<2>
typedef map<string, KeyOpFieldsValuesTuple> SyncMap;

class Consumer : public Executor {
public:
    Consumer(TableConsumable *select, Orch *orch)
        : Executor(select, orch)
    { }

    TableConsumable *getConsumerTable() const
    {return static_cast<TableConsumable *>(getSelectable());
    }

    string getTableName() const
    {return getConsumerTable()->getTableName();}
    // 事物执行
    void execute();
    void drain();

    /* Store the latest 'golden' status */
    // TODO: hide?
    SyncMap m_toSync;
};

void Consumer::execute()

epoll 事件触发后,需要调用该函数从数据库中读取出指定 key 的内容,将其加工后存放在 m_toSync 中,供后续处理。

void Consumer::execute()
{SWSS_LOG_ENTER();

    std::deque<KeyOpFieldsValuesTuple> entries;
    // 调用 pops 函数,从 redis 数据库中读取数据,返回 KeyOpFieldsValuesTuple 结构
    getConsumerTable()->pops(entries);

    /* Nothing popped */
    if (entries.empty())
    {return;}
    // 遍历每一个事件
    for (auto& entry: entries)
    {string key = kfvKey(entry);
        string op  = kfvOp(entry);

        /* Record incoming tasks 记录事件 */
        if (gSwssRecord)
        {Orch::recordTuple(*this, entry);
        }

        /* If a new task comes or if a DEL task comes, we directly put it into getConsumerTable().m_toSync map */
        // 在这里进行一次合并,对于删除事件,直接覆盖
        if (m_toSync.find(key) == m_toSync.end() || op == DEL_COMMAND)
        {m_toSync[key] = entry;
        }
        /* If an old task is still there, we combine the old task with new task */
        /*  */
        else
        {KeyOpFieldsValuesTuple existing_data = m_toSync[key];

            auto new_values = kfvFieldsValues(entry);
            auto existing_values = kfvFieldsValues(existing_data);

            // 遍历每一个新的值
            for (auto it : new_values)
            {string field = fvField(it);
                string value = fvValue(it);

                auto iu = existing_values.begin();
                while (iu != existing_values.end())// 遍历每一个旧的值
                {string ofield = fvField(*iu);
                    if (field == ofield)// 相同的域,将老的值覆盖,这里应该跳出 while,代码效率较差
                        iu = existing_values.erase(iu);
                    else
                        iu++;
                }
                /* 将新的值添加进去 */
                existing_values.push_back(FieldValueTuple(field, value));
            }
            m_toSync[key] = KeyOpFieldsValuesTuple(key, op, existing_values);
        }
    }
    // 执行所有整理好的任务。drain();}

假设有一个 task 的键值对如下:

key=test;op=set;value={
    A:a,
    B:b,
    C:c,
}

第一次触发任务是在 APP_DB 中写入了:

key=test;op=set;value={
    A:a,
    B:b
}

加入 orchagent 只是将该任务读取到了 m_toSync 中,由于某种原因没有执行完该任务,依然驻留在 m_toSync 中。第二次写入了:

key=test;op=set;value={
    B:b1,
    C:c
}

那么经过 execute 函数后 m_toSync 中将会是:

key=test;op=set;value={
    A:a,
    B:b1,
    C:c
}

void Consumer::drain()

执行 m_toSync 中的任务。

void Consumer::drain()
{if (!m_toSync.empty())
        m_orch->doTask(*this);
}

class Orch

class Orch
{
public:
    // 每个 orch 都会连接到数据库,以及其需要订阅的表名,和订阅该表产生的事件的优先级
    
    // 以默认优先级订阅一个 table
    Orch(DBConnector *db, const string tableName, int pri = default_orch_pri);
    // 以默认优先级订阅多个 table
    Orch(DBConnector *db, const vector<string> &tableNames);
    // 订阅多个 table,指明每个 table 的优先级
    Orch(DBConnector *db, const vector<table_name_with_pri_t> &tableNameWithPri);
    // 连接多个数据库
    Orch(const vector<TableConnector>& tables);
    virtual ~Orch();
    // 获取该 orch 的所有 epoll 事件
    vector<Selectable*> getSelectables();

    /* Iterate all consumers in m_consumerMap and run doTask(Consumer) */
    // 执行该 orch 中所有的 consumers 中的 m_sync 中的任务
    void doTask();

    /* Run doTask against a specific executor */
    // 任务的来源可以是 consumer,NotificationConsumer,SelectableTimer
    virtual void doTask(Consumer &consumer) = 0;
    virtual void doTask(NotificationConsumer &consumer) { }
    virtual void doTask(SelectableTimer &timer) { }

    /* TODO: refactor recording */
    static void recordTuple(Consumer &consumer, KeyOpFieldsValuesTuple &tuple);
protected:
    // 消费者 map,一个 orch 可以订阅多个 table,key 为 tableName,value 为 Executor
    ConsumerMap m_consumerMap;
    // 与调试相关
    static void logfileReopen();
    string dumpTuple(Consumer &consumer, KeyOpFieldsValuesTuple &tuple);
    ref_resolve_status resolveFieldRefValue(type_map&, const string&, KeyOpFieldsValuesTuple&, sai_object_id_t&);
    bool parseIndexRange(const string &input, sai_uint32_t &range_low, sai_uint32_t &range_high);
    bool parseReference(type_map &type_maps, string &ref, string &table_name, string &object_name);
    ref_resolve_status resolveFieldRefArray(type_map&, const string&, KeyOpFieldsValuesTuple&, vector<sai_object_id_t>&);

    /* Note: consumer will be owned by this class */
    // 内部函数添加一个 Executor,给 addConsumer 使用
    void addExecutor(string executorName, Executor* executor);
    Executor *getExecutor(string executorName);
private:
    // 添加一个消费者
    void addConsumer(DBConnector *db, string tableName, int pri = default_orch_pri);
};

void Orch::addConsumer(……)

void Orch::addExecutor(string executorName, Executor* executor)
{
    m_consumerMap.emplace(std::piecewise_construct,
            std::forward_as_tuple(executorName),
            std::forward_as_tuple(executor));
}
// 添加一个消费者
void Orch::addConsumer(DBConnector *db, string tableName, int pri)
{if (db->getDbId() == CONFIG_DB || db->getDbId() == STATE_DB)
    {addExecutor(tableName, new Consumer(new SubscriberStateTable(db, tableName, TableConsumable::DEFAULT_POP_BATCH_SIZE, pri), this));
    }
    else
    {addExecutor(tableName, new Consumer(new ConsumerStateTable(db, tableName, gBatchSize, pri), this));
    }
}

void Orch::doTask(……)

执行本 orch 中的每一个消费者 m_toSync 中的 task,不管该 task 是否本次从 redis 中读取还是以前未处理完毕的。

void Orch::doTask()
{for(auto &it : m_consumerMap)
    {it.second->drain();
    }
}

class Orch2

orch2 是在 orch 的基础上的一个封装,代码的可读性增强。

class Orch2 : public Orch
{
public:
    Orch2(DBConnector *db, const std::string& tableName, Request& request, int pri=default_orch_pri)
        : Orch(db, tableName, pri), request_(request)
    { }

protected:
    virtual void doTask(Consumer& consumer);

    virtual bool addOperation(const Request& request)=0;
    virtual bool delOperation(const Request& request)=0;

private:
    Request& request_;
};

void Orch2::doTask

void Orch2::doTask(Consumer &consumer)
{SWSS_LOG_ENTER();

    auto it = consumer.m_toSync.begin();
    while (it != consumer.m_toSync.end())
    {
        bool erase_from_queue = true;
        try
        {request_.parse(it->second);

            auto op = request_.getOperation();
            if (op == SET_COMMAND)
            {erase_from_queue = addOperation(request_);
            }
            else if (op == DEL_COMMAND)
            {erase_from_queue = delOperation(request_);
            }
            else
            {SWSS_LOG_ERROR("Wrong operation. Check RequestParser: %s", op.c_str());
            }
        }
        catch (const std::invalid_argument& e)
        {SWSS_LOG_ERROR("Parse error: %s", e.what());
        }
        catch (const std::logic_error& e)
        {SWSS_LOG_ERROR("Logic error: %s", e.what());
        }
        catch (const std::exception& e)
        {SWSS_LOG_ERROR("Exception was catched in the request parser: %s", e.what());
        }
        catch (...)
        {SWSS_LOG_ERROR("Unknown exception was catched in the request parser");
        }
        request_.clear();
        // 执行成功,那么从 m_tosync 中删除,否则执行下一个 task
        if (erase_from_queue)
        {it = consumer.m_toSync.erase(it);
        }
        else
        {++it;}
    }
}

正文完
 0