恕我直言你可能真的不会java第3篇Stream的Filter与谓词逻辑

47次阅读

共计 3163 个字符,预计需要花费 8 分钟才能阅读完成。

一、基础代码准备

建立一个实体类,该实体类有五个属性。下面的代码使用了 lombok 的注解 Data、AllArgsConstructor,这样我们就不用写 get、set 方法和全参构造函数了。lombok 会帮助我们在编译期生成这些模式化的代码。

@Data
@AllArgsConstructor
public class Employee {

   private Integer id;
   private Integer age;   // 年龄
   private String gender;  // 性别
   private String firstName;  
   private String lastName;
}

写一个测试类,这个测试类的内容也很简单,新建十个 Employee 对象

public class StreamFilterPredicate {public static void main(String[] args){Employee e1 = new Employee(1,23,"M","Rick","Beethovan");
        Employee e2 = new Employee(2,13,"F","Martina","Hengis");
        Employee e3 = new Employee(3,43,"M","Ricky","Martin");
        Employee e4 = new Employee(4,26,"M","Jon","Lowman");
        Employee e5 = new Employee(5,19,"F","Cristine","Maria");
        Employee e6 = new Employee(6,15,"M","David","Feezor");
        Employee e7 = new Employee(7,68,"F","Melissa","Roy");
        Employee e8 = new Employee(8,79,"M","Alex","Gussin");
        Employee e9 = new Employee(9,15,"F","Neetu","Singh");
        Employee e10 = new Employee(10,45,"M","Naveen","Jain");


        List<Employee> employees = Arrays.asList(e1, e2, e3, e4, e5, e6, e7, e8, e9, e10);

        List<Employee> filtered = employees.stream()
                .filter(e -> e.getAge() > 70 && e.getGender().equals("M"))
                .collect(Collectors.toList());

        System.out.println(filtered);

    }

}

需要注意的是上面的 filter 传入了 lambda 表达式 (之前的章节我们已经讲过了),表达过滤年龄大于 70 并且男性的 Employee 员工。输出如下:

[Employee(id=8, age=79, gender=M, firstName=Alex, lastName=Gussin)]

二、什么是谓词逻辑?

下面要说我们的重点了,通过之前的章节的讲解,我们已经知道 lambda 表达式表达的是一个匿名接口函数的实现。那具体到 Stream.filter() 中,它表达的是什么呢?看下图:可以看出它表达的是一个 Predicate 接口,在英语中这个单词的意思是:谓词。

什么是谓词?(百度百科)

什么是谓词逻辑?

WHERE 和 AND 限定了主语 employee 是什么,那么 WHERE 和 AND 语句所代表的逻辑就是谓词逻辑

SELECT *
FROM employee
WHERE age > 70
AND gender = 'M'

三、谓词逻辑的复用

通常情况下,filter 函数中 lambda 表达式为一次性使用的谓词逻辑。如果我们的谓词逻辑需要被多处、多场景、多代码中使用,通常将它抽取出来单独定义到它所限定的主语实体中。
比如:将下面的谓词逻辑定义在 Employee 实体 class 中。

   public static Predicate<Employee> ageGreaterThan70 = x -> x.getAge() >70;
   public static Predicate<Employee> genderM = x -> x.getGender().equals("M");

3.1.and 语法(并集)

List<Employee> filtered = employees.stream()
        .filter(Employee.ageGreaterThan70.and(Employee.genderM))
        .collect(Collectors.toList());

输出如下:

[Employee(id=8, age=79, gender=M, firstName=Alex, lastName=Gussin)]

3.2.or 语法(交集)

List<Employee> filtered = employees.stream()
        .filter(Employee.ageGreaterThan70.or(Employee.genderM))
        .collect(Collectors.toList());

输出如下:实际上就是年龄大于 70 的和所有的男性(由于 79 的那位也是男性,所以就是所有的男性)

[Employee(id=1, age=23, gender=M, firstName=Rick, lastName=Beethovan), Employee(id=3, age=43, gender=M, firstName=Ricky, lastName=Martin), Employee(id=4, age=26, gender=M, firstName=Jon, lastName=Lowman), Employee(id=6, age=15, gender=M, firstName=David, lastName=Feezor), Employee(id=8, age=79, gender=M, firstName=Alex, lastName=Gussin), Employee(id=10, age=45, gender=M, firstName=Naveen, lastName=Jain)]

3.3.negate 语法(取反)

List<Employee> filtered = employees.stream()
        .filter(Employee.ageGreaterThan70.or(Employee.genderM).negate())
        .collect(Collectors.toList());

输出如下:把上一小节代码的结果取反,实际上就是所有的女性

[Employee(id=2, age=13, gender=F, firstName=Martina, lastName=Hengis), Employee(id=5, age=19, gender=F, firstName=Cristine, lastName=Maria), Employee(id=7, age=68, gender=F, firstName=Melissa, lastName=Roy), Employee(id=9, age=15, gender=F, firstName=Neetu, lastName=Singh)]

欢迎关注我的博客,里面有很多精品合集

  • 本文转载注明出处(必须带连接,不能只转文字):字母哥博客。

觉得对您有帮助的话,帮我点赞、分享!您的支持是我不竭的创作动力!。另外,笔者最近一段时间输出了如下的精品内容,期待您的关注。

  • 《手摸手教你学 Spring Boot2.0》
  • 《Spring Security-JWT-OAuth2 一本通》
  • 《实战前后端分离 RBAC 权限管理系统》
  • 《实战 SpringCloud 微服务从青铜到王者》
  • 《VUE 深入浅出系列》

正文完
 0