聊聊flink的CheckpointScheduler

51次阅读

共计 36280 个字符,预计需要花费 91 分钟才能阅读完成。


本文主要研究一下 flink 的 CheckpointScheduler
CheckpointCoordinatorDeActivator
flink-runtime_2.11-1.7.0-sources.jar!/org/apache/flink/runtime/checkpoint/CheckpointCoordinatorDeActivator.java
/**
* This actor listens to changes in the JobStatus and activates or deactivates the periodic
* checkpoint scheduler.
*/
public class CheckpointCoordinatorDeActivator implements JobStatusListener {

private final CheckpointCoordinator coordinator;

public CheckpointCoordinatorDeActivator(CheckpointCoordinator coordinator) {
this.coordinator = checkNotNull(coordinator);
}

@Override
public void jobStatusChanges(JobID jobId, JobStatus newJobStatus, long timestamp, Throwable error) {
if (newJobStatus == JobStatus.RUNNING) {
// start the checkpoint scheduler
coordinator.startCheckpointScheduler();
} else {
// anything else should stop the trigger for now
coordinator.stopCheckpointScheduler();
}
}
}
CheckpointCoordinatorDeActivator 实现了 JobStatusListener 接口,在 jobStatusChanges 的时候,根据状态来调用 coordinator.startCheckpointScheduler 或者 coordinator.stopCheckpointScheduler
CheckpointCoordinator.ScheduledTrigger
flink-runtime_2.11-1.7.0-sources.jar!/org/apache/flink/runtime/checkpoint/CheckpointCoordinator.java
/**
* The checkpoint coordinator coordinates the distributed snapshots of operators and state.
* It triggers the checkpoint by sending the messages to the relevant tasks and collects the
* checkpoint acknowledgements. It also collects and maintains the overview of the state handles
* reported by the tasks that acknowledge the checkpoint.
*/
public class CheckpointCoordinator {

/** Map from checkpoint ID to the pending checkpoint */
private final Map<Long, PendingCheckpoint> pendingCheckpoints;

/** The number of consecutive failed trigger attempts */
private final AtomicInteger numUnsuccessfulCheckpointsTriggers = new AtomicInteger(0);

//……

public void startCheckpointScheduler() {
synchronized (lock) {
if (shutdown) {
throw new IllegalArgumentException(“Checkpoint coordinator is shut down”);
}

// make sure all prior timers are cancelled
stopCheckpointScheduler();

periodicScheduling = true;
long initialDelay = ThreadLocalRandom.current().nextLong(
minPauseBetweenCheckpointsNanos / 1_000_000L, baseInterval + 1L);
currentPeriodicTrigger = timer.scheduleAtFixedRate(
new ScheduledTrigger(), initialDelay, baseInterval, TimeUnit.MILLISECONDS);
}
}

public void stopCheckpointScheduler() {
synchronized (lock) {
triggerRequestQueued = false;
periodicScheduling = false;

if (currentPeriodicTrigger != null) {
currentPeriodicTrigger.cancel(false);
currentPeriodicTrigger = null;
}

for (PendingCheckpoint p : pendingCheckpoints.values()) {
p.abortError(new Exception(“Checkpoint Coordinator is suspending.”));
}

pendingCheckpoints.clear();
numUnsuccessfulCheckpointsTriggers.set(0);
}
}

private final class ScheduledTrigger implements Runnable {

@Override
public void run() {
try {
triggerCheckpoint(System.currentTimeMillis(), true);
}
catch (Exception e) {
LOG.error(“Exception while triggering checkpoint for job {}.”, job, e);
}
}
}

//……
}

CheckpointCoordinator 的 startCheckpointScheduler 方法首先调用 stopCheckpointScheduler 取消 PendingCheckpoint,之后使用 timer.scheduleAtFixedRate 重新调度 ScheduledTrigger
stopCheckpointScheduler 会调用 PendingCheckpoint.abortError 来取消 pendingCheckpoints,然后清空 pendingCheckpoints(Map<Long, PendingCheckpoint>)以及 numUnsuccessfulCheckpointsTriggers(AtomicInteger)
ScheduledTrigger 实现了 Runnable 接口,其 run 方法主要是调用 triggerCheckpoint,传递的 isPeriodic 参数为 true

CheckpointCoordinator.triggerCheckpoint
flink-runtime_2.11-1.7.0-sources.jar!/org/apache/flink/runtime/checkpoint/CheckpointCoordinator.java
/**
* The checkpoint coordinator coordinates the distributed snapshots of operators and state.
* It triggers the checkpoint by sending the messages to the relevant tasks and collects the
* checkpoint acknowledgements. It also collects and maintains the overview of the state handles
* reported by the tasks that acknowledge the checkpoint.
*/
public class CheckpointCoordinator {

/** Tasks who need to be sent a message when a checkpoint is started */
private final ExecutionVertex[] tasksToTrigger;

/** Tasks who need to acknowledge a checkpoint before it succeeds */
private final ExecutionVertex[] tasksToWaitFor;

/** Map from checkpoint ID to the pending checkpoint */
private final Map<Long, PendingCheckpoint> pendingCheckpoints;

/** The maximum number of checkpoints that may be in progress at the same time */
private final int maxConcurrentCheckpointAttempts;

/** The min time(in ns) to delay after a checkpoint could be triggered. Allows to
* enforce minimum processing time between checkpoint attempts */
private final long minPauseBetweenCheckpointsNanos;

/**
* Triggers a new standard checkpoint and uses the given timestamp as the checkpoint
* timestamp.
*
* @param timestamp The timestamp for the checkpoint.
* @param isPeriodic Flag indicating whether this triggered checkpoint is
* periodic. If this flag is true, but the periodic scheduler is disabled,
* the checkpoint will be declined.
* @return <code>true</code> if triggering the checkpoint succeeded.
*/
public boolean triggerCheckpoint(long timestamp, boolean isPeriodic) {
return triggerCheckpoint(timestamp, checkpointProperties, null, isPeriodic).isSuccess();
}

@VisibleForTesting
public CheckpointTriggerResult triggerCheckpoint(
long timestamp,
CheckpointProperties props,
@Nullable String externalSavepointLocation,
boolean isPeriodic) {

// make some eager pre-checks
synchronized (lock) {
// abort if the coordinator has been shutdown in the meantime
if (shutdown) {
return new CheckpointTriggerResult(CheckpointDeclineReason.COORDINATOR_SHUTDOWN);
}

// Don’t allow periodic checkpoint if scheduling has been disabled
if (isPeriodic && !periodicScheduling) {
return new CheckpointTriggerResult(CheckpointDeclineReason.PERIODIC_SCHEDULER_SHUTDOWN);
}

// validate whether the checkpoint can be triggered, with respect to the limit of
// concurrent checkpoints, and the minimum time between checkpoints.
// these checks are not relevant for savepoints
if (!props.forceCheckpoint()) {
// sanity check: there should never be more than one trigger request queued
if (triggerRequestQueued) {
LOG.warn(“Trying to trigger another checkpoint for job {} while one was queued already.”, job);
return new CheckpointTriggerResult(CheckpointDeclineReason.ALREADY_QUEUED);
}

// if too many checkpoints are currently in progress, we need to mark that a request is queued
if (pendingCheckpoints.size() >= maxConcurrentCheckpointAttempts) {
triggerRequestQueued = true;
if (currentPeriodicTrigger != null) {
currentPeriodicTrigger.cancel(false);
currentPeriodicTrigger = null;
}
return new CheckpointTriggerResult(CheckpointDeclineReason.TOO_MANY_CONCURRENT_CHECKPOINTS);
}

// make sure the minimum interval between checkpoints has passed
final long earliestNext = lastCheckpointCompletionNanos + minPauseBetweenCheckpointsNanos;
final long durationTillNextMillis = (earliestNext – System.nanoTime()) / 1_000_000;

if (durationTillNextMillis > 0) {
if (currentPeriodicTrigger != null) {
currentPeriodicTrigger.cancel(false);
currentPeriodicTrigger = null;
}
// Reassign the new trigger to the currentPeriodicTrigger
currentPeriodicTrigger = timer.scheduleAtFixedRate(
new ScheduledTrigger(),
durationTillNextMillis, baseInterval, TimeUnit.MILLISECONDS);

return new CheckpointTriggerResult(CheckpointDeclineReason.MINIMUM_TIME_BETWEEN_CHECKPOINTS);
}
}
}

// check if all tasks that we need to trigger are running.
// if not, abort the checkpoint
Execution[] executions = new Execution[tasksToTrigger.length];
for (int i = 0; i < tasksToTrigger.length; i++) {
Execution ee = tasksToTrigger[i].getCurrentExecutionAttempt();
if (ee == null) {
LOG.info(“Checkpoint triggering task {} of job {} is not being executed at the moment. Aborting checkpoint.”,
tasksToTrigger[i].getTaskNameWithSubtaskIndex(),
job);
return new CheckpointTriggerResult(CheckpointDeclineReason.NOT_ALL_REQUIRED_TASKS_RUNNING);
} else if (ee.getState() == ExecutionState.RUNNING) {
executions[i] = ee;
} else {
LOG.info(“Checkpoint triggering task {} of job {} is not in state {} but {} instead. Aborting checkpoint.”,
tasksToTrigger[i].getTaskNameWithSubtaskIndex(),
job,
ExecutionState.RUNNING,
ee.getState());
return new CheckpointTriggerResult(CheckpointDeclineReason.NOT_ALL_REQUIRED_TASKS_RUNNING);
}
}

// next, check if all tasks that need to acknowledge the checkpoint are running.
// if not, abort the checkpoint
Map<ExecutionAttemptID, ExecutionVertex> ackTasks = new HashMap<>(tasksToWaitFor.length);

for (ExecutionVertex ev : tasksToWaitFor) {
Execution ee = ev.getCurrentExecutionAttempt();
if (ee != null) {
ackTasks.put(ee.getAttemptId(), ev);
} else {
LOG.info(“Checkpoint acknowledging task {} of job {} is not being executed at the moment. Aborting checkpoint.”,
ev.getTaskNameWithSubtaskIndex(),
job);
return new CheckpointTriggerResult(CheckpointDeclineReason.NOT_ALL_REQUIRED_TASKS_RUNNING);
}
}

// we will actually trigger this checkpoint!

// we lock with a special lock to make sure that trigger requests do not overtake each other.
// this is not done with the coordinator-wide lock, because the ‘checkpointIdCounter’
// may issue blocking operations. Using a different lock than the coordinator-wide lock,
// we avoid blocking the processing of ‘acknowledge/decline’ messages during that time.
synchronized (triggerLock) {

final CheckpointStorageLocation checkpointStorageLocation;
final long checkpointID;

try {
// this must happen outside the coordinator-wide lock, because it communicates
// with external services (in HA mode) and may block for a while.
checkpointID = checkpointIdCounter.getAndIncrement();

checkpointStorageLocation = props.isSavepoint() ?
checkpointStorage.initializeLocationForSavepoint(checkpointID, externalSavepointLocation) :
checkpointStorage.initializeLocationForCheckpoint(checkpointID);
}
catch (Throwable t) {
int numUnsuccessful = numUnsuccessfulCheckpointsTriggers.incrementAndGet();
LOG.warn(“Failed to trigger checkpoint for job {} ({} consecutive failed attempts so far).”,
job,
numUnsuccessful,
t);
return new CheckpointTriggerResult(CheckpointDeclineReason.EXCEPTION);
}

final PendingCheckpoint checkpoint = new PendingCheckpoint(
job,
checkpointID,
timestamp,
ackTasks,
props,
checkpointStorageLocation,
executor);

if (statsTracker != null) {
PendingCheckpointStats callback = statsTracker.reportPendingCheckpoint(
checkpointID,
timestamp,
props);

checkpoint.setStatsCallback(callback);
}

// schedule the timer that will clean up the expired checkpoints
final Runnable canceller = () -> {
synchronized (lock) {
// only do the work if the checkpoint is not discarded anyways
// note that checkpoint completion discards the pending checkpoint object
if (!checkpoint.isDiscarded()) {
LOG.info(“Checkpoint {} of job {} expired before completing.”, checkpointID, job);

checkpoint.abortExpired();
pendingCheckpoints.remove(checkpointID);
rememberRecentCheckpointId(checkpointID);

triggerQueuedRequests();
}
}
};

try {
// re-acquire the coordinator-wide lock
synchronized (lock) {
// since we released the lock in the meantime, we need to re-check
// that the conditions still hold.
if (shutdown) {
return new CheckpointTriggerResult(CheckpointDeclineReason.COORDINATOR_SHUTDOWN);
}
else if (!props.forceCheckpoint()) {
if (triggerRequestQueued) {
LOG.warn(“Trying to trigger another checkpoint for job {} while one was queued already.”, job);
return new CheckpointTriggerResult(CheckpointDeclineReason.ALREADY_QUEUED);
}

if (pendingCheckpoints.size() >= maxConcurrentCheckpointAttempts) {
triggerRequestQueued = true;
if (currentPeriodicTrigger != null) {
currentPeriodicTrigger.cancel(false);
currentPeriodicTrigger = null;
}
return new CheckpointTriggerResult(CheckpointDeclineReason.TOO_MANY_CONCURRENT_CHECKPOINTS);
}

// make sure the minimum interval between checkpoints has passed
final long earliestNext = lastCheckpointCompletionNanos + minPauseBetweenCheckpointsNanos;
final long durationTillNextMillis = (earliestNext – System.nanoTime()) / 1_000_000;

if (durationTillNextMillis > 0) {
if (currentPeriodicTrigger != null) {
currentPeriodicTrigger.cancel(false);
currentPeriodicTrigger = null;
}

// Reassign the new trigger to the currentPeriodicTrigger
currentPeriodicTrigger = timer.scheduleAtFixedRate(
new ScheduledTrigger(),
durationTillNextMillis, baseInterval, TimeUnit.MILLISECONDS);

return new CheckpointTriggerResult(CheckpointDeclineReason.MINIMUM_TIME_BETWEEN_CHECKPOINTS);
}
}

LOG.info(“Triggering checkpoint {} @ {} for job {}.”, checkpointID, timestamp, job);

pendingCheckpoints.put(checkpointID, checkpoint);

ScheduledFuture<?> cancellerHandle = timer.schedule(
canceller,
checkpointTimeout, TimeUnit.MILLISECONDS);

if (!checkpoint.setCancellerHandle(cancellerHandle)) {
// checkpoint is already disposed!
cancellerHandle.cancel(false);
}

// trigger the master hooks for the checkpoint
final List<MasterState> masterStates = MasterHooks.triggerMasterHooks(masterHooks.values(),
checkpointID, timestamp, executor, Time.milliseconds(checkpointTimeout));
for (MasterState s : masterStates) {
checkpoint.addMasterState(s);
}
}
// end of lock scope

final CheckpointOptions checkpointOptions = new CheckpointOptions(
props.getCheckpointType(),
checkpointStorageLocation.getLocationReference());

// send the messages to the tasks that trigger their checkpoint
for (Execution execution: executions) {
execution.triggerCheckpoint(checkpointID, timestamp, checkpointOptions);
}

numUnsuccessfulCheckpointsTriggers.set(0);
return new CheckpointTriggerResult(checkpoint);
}
catch (Throwable t) {
// guard the map against concurrent modifications
synchronized (lock) {
pendingCheckpoints.remove(checkpointID);
}

int numUnsuccessful = numUnsuccessfulCheckpointsTriggers.incrementAndGet();
LOG.warn(“Failed to trigger checkpoint {} for job {}. ({} consecutive failed attempts so far)”,
checkpointID, job, numUnsuccessful, t);

if (!checkpoint.isDiscarded()) {
checkpoint.abortError(new Exception(“Failed to trigger checkpoint”, t));
}

try {
checkpointStorageLocation.disposeOnFailure();
}
catch (Throwable t2) {
LOG.warn(“Cannot dispose failed checkpoint storage location {}”, checkpointStorageLocation, t2);
}

return new CheckpointTriggerResult(CheckpointDeclineReason.EXCEPTION);
}

} // end trigger lock
}

//……
}

首先判断如果不是 forceCheckpoint 的话,则判断当前的 pendingCheckpoints 值是否超过 maxConcurrentCheckpointAttempts,超过的话,立刻 fail fast,返回 CheckpointTriggerResult(CheckpointDeclineReason.TOO_MANY_CONCURRENT_CHECKPOINTS);之后判断距离 lastCheckpointCompletionNanos 的时间是否大于等于 minPauseBetweenCheckpointsNanos,否则 fail fast,返回 CheckpointTriggerResult(CheckpointDeclineReason.MINIMUM_TIME_BETWEEN_CHECKPOINTS),确保 checkpoint 不被频繁触发
之后检查 tasksToTrigger 的任务 (触发 checkpoint 的时候需要通知到的 task) 是否都处于 RUNNING 状态,不是的话则立刻 fail fast,返回 CheckpointTriggerResult(CheckpointDeclineReason.NOT_ALL_REQUIRED_TASKS_RUNNING)
之后检查 tasksToWaitFor 的任务 (需要在执行成功的时候 ack checkpoint 的任务) 是否都处于 RUNNING 状态,不是的话立刻 fail fast,返回 CheckpointTriggerResult(CheckpointDeclineReason.NOT_ALL_REQUIRED_TASKS_RUNNING)
前面几步检查通过了之后才开始真正的 checkpoint 的触发,它首先分配一个 checkpointID,然后初始化 checkpointStorageLocation,如果异常则返回 CheckpointTriggerResult(CheckpointDeclineReason.EXCEPTION);之后创建 PendingCheckpoint,同时准备 canceller(用于在失效的时候执行 abort 操作);之后对于不是 forceCheckpoint 的,再重新来一轮 TOO_MANY_CONCURRENT_CHECKPOINTS、MINIMUM_TIME_BETWEEN_CHECKPOINTS 校验
最后就是针对 Execution,挨个触发 execution 的 triggerCheckpoint 操作,成功返回 CheckpointTriggerResult(checkpoint),异常则返回 CheckpointTriggerResult(CheckpointDeclineReason.EXCEPTION)

Execution.triggerCheckpoint
flink-runtime_2.11-1.7.0-sources.jar!/org/apache/flink/runtime/executiongraph/Execution.java
public class Execution implements AccessExecution, Archiveable<ArchivedExecution>, LogicalSlot.Payload {

/**
* Trigger a new checkpoint on the task of this execution.
*
* @param checkpointId of th checkpoint to trigger
* @param timestamp of the checkpoint to trigger
* @param checkpointOptions of the checkpoint to trigger
*/
public void triggerCheckpoint(long checkpointId, long timestamp, CheckpointOptions checkpointOptions) {
final LogicalSlot slot = assignedResource;

if (slot != null) {
final TaskManagerGateway taskManagerGateway = slot.getTaskManagerGateway();

taskManagerGateway.triggerCheckpoint(attemptId, getVertex().getJobId(), checkpointId, timestamp, checkpointOptions);
} else {
LOG.debug(“The execution has no slot assigned. This indicates that the execution is ” +
“no longer running.”);
}
}

//……
}
triggerCheckpoint 主要是调用 taskManagerGateway.triggerCheckpoint,这里的 taskManagerGateway 为 RpcTaskManagerGateway
RpcTaskManagerGateway
flink-runtime_2.11-1.7.0-sources.jar!/org/apache/flink/runtime/jobmaster/RpcTaskManagerGateway.java
/**
* Implementation of the {@link TaskManagerGateway} for Flink’s RPC system.
*/
public class RpcTaskManagerGateway implements TaskManagerGateway {

private final TaskExecutorGateway taskExecutorGateway;

public void triggerCheckpoint(ExecutionAttemptID executionAttemptID, JobID jobId, long checkpointId, long timestamp, CheckpointOptions checkpointOptions) {
taskExecutorGateway.triggerCheckpoint(
executionAttemptID,
checkpointId,
timestamp,
checkpointOptions);
}

//……
}
RpcTaskManagerGateway 的 triggerCheckpoint 方法调用 taskExecutorGateway.triggerCheckpoint,这里的 taskExecutorGateway 为 AkkaInvocationHandler,通过 rpc 通知 TaskExecutor
TaskExecutor.triggerCheckpoint
flink-runtime_2.11-1.7.0-sources.jar!/org/apache/flink/runtime/taskexecutor/TaskExecutor.java
/**
* TaskExecutor implementation. The task executor is responsible for the execution of multiple
* {@link Task}.
*/
public class TaskExecutor extends RpcEndpoint implements TaskExecutorGateway {

public CompletableFuture<Acknowledge> triggerCheckpoint(
ExecutionAttemptID executionAttemptID,
long checkpointId,
long checkpointTimestamp,
CheckpointOptions checkpointOptions) {
log.debug(“Trigger checkpoint {}@{} for {}.”, checkpointId, checkpointTimestamp, executionAttemptID);

final Task task = taskSlotTable.getTask(executionAttemptID);

if (task != null) {
task.triggerCheckpointBarrier(checkpointId, checkpointTimestamp, checkpointOptions);

return CompletableFuture.completedFuture(Acknowledge.get());
} else {
final String message = “TaskManager received a checkpoint request for unknown task ” + executionAttemptID + ‘.’;

log.debug(message);
return FutureUtils.completedExceptionally(new CheckpointException(message));
}
}

//……
}
TaskExecutor 的 triggerCheckpoint 方法这里调用 task.triggerCheckpointBarrier
Task.triggerCheckpointBarrier
flink-runtime_2.11-1.7.0-sources.jar!/org/apache/flink/runtime/taskmanager/Task.java
public class Task implements Runnable, TaskActions, CheckpointListener {

/** The invokable of this task, if initialized. All accesses must copy the reference and
* check for null, as this field is cleared as part of the disposal logic. */
@Nullable
private volatile AbstractInvokable invokable;

/**
* Calls the invokable to trigger a checkpoint.
*
* @param checkpointID The ID identifying the checkpoint.
* @param checkpointTimestamp The timestamp associated with the checkpoint.
* @param checkpointOptions Options for performing this checkpoint.
*/
public void triggerCheckpointBarrier(
final long checkpointID,
long checkpointTimestamp,
final CheckpointOptions checkpointOptions) {

final AbstractInvokable invokable = this.invokable;
final CheckpointMetaData checkpointMetaData = new CheckpointMetaData(checkpointID, checkpointTimestamp);

if (executionState == ExecutionState.RUNNING && invokable != null) {

// build a local closure
final String taskName = taskNameWithSubtask;
final SafetyNetCloseableRegistry safetyNetCloseableRegistry =
FileSystemSafetyNet.getSafetyNetCloseableRegistryForThread();

Runnable runnable = new Runnable() {
@Override
public void run() {
// set safety net from the task’s context for checkpointing thread
LOG.debug(“Creating FileSystem stream leak safety net for {}”, Thread.currentThread().getName());
FileSystemSafetyNet.setSafetyNetCloseableRegistryForThread(safetyNetCloseableRegistry);

try {
boolean success = invokable.triggerCheckpoint(checkpointMetaData, checkpointOptions);
if (!success) {
checkpointResponder.declineCheckpoint(
getJobID(), getExecutionId(), checkpointID,
new CheckpointDeclineTaskNotReadyException(taskName));
}
}
catch (Throwable t) {
if (getExecutionState() == ExecutionState.RUNNING) {
failExternally(new Exception(
“Error while triggering checkpoint ” + checkpointID + ” for ” +
taskNameWithSubtask, t));
} else {
LOG.debug(“Encountered error while triggering checkpoint {} for ” +
“{} ({}) while being not in state running.”, checkpointID,
taskNameWithSubtask, executionId, t);
}
} finally {
FileSystemSafetyNet.setSafetyNetCloseableRegistryForThread(null);
}
}
};
executeAsyncCallRunnable(runnable, String.format(“Checkpoint Trigger for %s (%s).”, taskNameWithSubtask, executionId));
}
else {
LOG.debug(“Declining checkpoint request for non-running task {} ({}).”, taskNameWithSubtask, executionId);

// send back a message that we did not do the checkpoint
checkpointResponder.declineCheckpoint(jobId, executionId, checkpointID,
new CheckpointDeclineTaskNotReadyException(taskNameWithSubtask));
}
}

//……
}

Task 的 triggerCheckpointBarrier 方法首先判断 executionState 是否 RUNNING 以及 invokable 是否不为 null,不满足条件则执行 checkpointResponder.declineCheckpoint
满足条件则执行 executeAsyncCallRunnable(runnable, String.format(“Checkpoint Trigger for %s (%s).”, taskNameWithSubtask, executionId))
这个 runnable 方法里头会执行 invokable.triggerCheckpoint(checkpointMetaData, checkpointOptions),这里的 invokable 为 SourceStreamTask

SourceStreamTask.triggerCheckpoint
flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/runtime/tasks/SourceStreamTask.java
@Internal
public class SourceStreamTask<OUT, SRC extends SourceFunction<OUT>, OP extends StreamSource<OUT, SRC>>
extends StreamTask<OUT, OP> {

private volatile boolean externallyInducedCheckpoints;

@Override
public boolean triggerCheckpoint(CheckpointMetaData checkpointMetaData, CheckpointOptions checkpointOptions) throws Exception {
if (!externallyInducedCheckpoints) {
return super.triggerCheckpoint(checkpointMetaData, checkpointOptions);
}
else {
// we do not trigger checkpoints here, we simply state whether we can trigger them
synchronized (getCheckpointLock()) {
return isRunning();
}
}
}

//……
}
SourceStreamTask 的 triggerCheckpoint 先判断,如果 externallyInducedCheckpoints 为 false,则调用父类 StreamTask 的 triggerCheckpoint
StreamTask.triggerCheckpoint
@Internal
public abstract class StreamTask<OUT, OP extends StreamOperator<OUT>>
extends AbstractInvokable
implements AsyncExceptionHandler {

@Override
public boolean triggerCheckpoint(CheckpointMetaData checkpointMetaData, CheckpointOptions checkpointOptions) throws Exception {
try {
// No alignment if we inject a checkpoint
CheckpointMetrics checkpointMetrics = new CheckpointMetrics()
.setBytesBufferedInAlignment(0L)
.setAlignmentDurationNanos(0L);

return performCheckpoint(checkpointMetaData, checkpointOptions, checkpointMetrics);
}
catch (Exception e) {
// propagate exceptions only if the task is still in “running” state
if (isRunning) {
throw new Exception(“Could not perform checkpoint ” + checkpointMetaData.getCheckpointId() +
” for operator ” + getName() + ‘.’, e);
} else {
LOG.debug(“Could not perform checkpoint {} for operator {} while the ” +
“invokable was not in state running.”, checkpointMetaData.getCheckpointId(), getName(), e);
return false;
}
}
}

private boolean performCheckpoint(
CheckpointMetaData checkpointMetaData,
CheckpointOptions checkpointOptions,
CheckpointMetrics checkpointMetrics) throws Exception {

LOG.debug(“Starting checkpoint ({}) {} on task {}”,
checkpointMetaData.getCheckpointId(), checkpointOptions.getCheckpointType(), getName());

synchronized (lock) {
if (isRunning) {
// we can do a checkpoint

// All of the following steps happen as an atomic step from the perspective of barriers and
// records/watermarks/timers/callbacks.
// We generally try to emit the checkpoint barrier as soon as possible to not affect downstream
// checkpoint alignments

// Step (1): Prepare the checkpoint, allow operators to do some pre-barrier work.
// The pre-barrier work should be nothing or minimal in the common case.
operatorChain.prepareSnapshotPreBarrier(checkpointMetaData.getCheckpointId());

// Step (2): Send the checkpoint barrier downstream
operatorChain.broadcastCheckpointBarrier(
checkpointMetaData.getCheckpointId(),
checkpointMetaData.getTimestamp(),
checkpointOptions);

// Step (3): Take the state snapshot. This should be largely asynchronous, to not
// impact progress of the streaming topology
checkpointState(checkpointMetaData, checkpointOptions, checkpointMetrics);
return true;
}
else {
// we cannot perform our checkpoint – let the downstream operators know that they
// should not wait for any input from this operator

// we cannot broadcast the cancellation markers on the ‘operator chain’, because it may not
// yet be created
final CancelCheckpointMarker message = new CancelCheckpointMarker(checkpointMetaData.getCheckpointId());
Exception exception = null;

for (StreamRecordWriter<SerializationDelegate<StreamRecord<OUT>>> streamRecordWriter : streamRecordWriters) {
try {
streamRecordWriter.broadcastEvent(message);
} catch (Exception e) {
exception = ExceptionUtils.firstOrSuppressed(
new Exception(“Could not send cancel checkpoint marker to downstream tasks.”, e),
exception);
}
}

if (exception != null) {
throw exception;
}

return false;
}
}
}

private void checkpointState(
CheckpointMetaData checkpointMetaData,
CheckpointOptions checkpointOptions,
CheckpointMetrics checkpointMetrics) throws Exception {

CheckpointStreamFactory storage = checkpointStorage.resolveCheckpointStorageLocation(
checkpointMetaData.getCheckpointId(),
checkpointOptions.getTargetLocation());

CheckpointingOperation checkpointingOperation = new CheckpointingOperation(
this,
checkpointMetaData,
checkpointOptions,
storage,
checkpointMetrics);

checkpointingOperation.executeCheckpointing();
}

//……
}

StreamTask 的 triggerCheckpoint 方法的主要处理逻辑在 performCheckpoint 方法上,该方法针对 task 的 isRunning 分别进行不同处理
isRunning 为 true 的时候,这里头分了三步来处理,第一步执行 operatorChain.prepareSnapshotPreBarrier,第二步执行 operatorChain.broadcastCheckpointBarrier,第三步执行 checkpointState 方法,checkpointState 里头创建 CheckpointingOperation,然后调用 checkpointingOperation.executeCheckpointing()
如果 isRunning 为 false,则这里 streamRecordWriter.broadcastEvent(message),这里的 message 为 CancelCheckpointMarker

OperatorChain.prepareSnapshotPreBarrier
flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/runtime/tasks/OperatorChain.java
@Internal
public class OperatorChain<OUT, OP extends StreamOperator<OUT>> implements StreamStatusMaintainer {

public void prepareSnapshotPreBarrier(long checkpointId) throws Exception {
// go forward through the operator chain and tell each operator
// to prepare the checkpoint
final StreamOperator<?>[] operators = this.allOperators;
for (int i = operators.length – 1; i >= 0; –i) {
final StreamOperator<?> op = operators[i];
if (op != null) {
op.prepareSnapshotPreBarrier(checkpointId);
}
}
}

//……
}
OperatorChain 的 prepareSnapshotPreBarrier 会遍历 allOperators 挨个调用 StreamOperator 的 prepareSnapshotPreBarrier 方法
OperatorChain.broadcastCheckpointBarrier
flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/runtime/tasks/OperatorChain.java
@Internal
public class OperatorChain<OUT, OP extends StreamOperator<OUT>> implements StreamStatusMaintainer {

public void broadcastCheckpointBarrier(long id, long timestamp, CheckpointOptions checkpointOptions) throws IOException {
CheckpointBarrier barrier = new CheckpointBarrier(id, timestamp, checkpointOptions);
for (RecordWriterOutput<?> streamOutput : streamOutputs) {
streamOutput.broadcastEvent(barrier);
}
}

//……
}
OperatorChain 的 broadcastCheckpointBarrier 方法则会遍历 streamOutputs 挨个调用 streamOutput 的 broadcastEvent 方法
CheckpointingOperation.executeCheckpointing
flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/runtime/tasks/StreamTask.java
private static final class CheckpointingOperation {

private final StreamTask<?, ?> owner;

private final CheckpointMetaData checkpointMetaData;
private final CheckpointOptions checkpointOptions;
private final CheckpointMetrics checkpointMetrics;
private final CheckpointStreamFactory storageLocation;

private final StreamOperator<?>[] allOperators;

private long startSyncPartNano;
private long startAsyncPartNano;

// ————————

private final Map<OperatorID, OperatorSnapshotFutures> operatorSnapshotsInProgress;

public CheckpointingOperation(
StreamTask<?, ?> owner,
CheckpointMetaData checkpointMetaData,
CheckpointOptions checkpointOptions,
CheckpointStreamFactory checkpointStorageLocation,
CheckpointMetrics checkpointMetrics) {

this.owner = Preconditions.checkNotNull(owner);
this.checkpointMetaData = Preconditions.checkNotNull(checkpointMetaData);
this.checkpointOptions = Preconditions.checkNotNull(checkpointOptions);
this.checkpointMetrics = Preconditions.checkNotNull(checkpointMetrics);
this.storageLocation = Preconditions.checkNotNull(checkpointStorageLocation);
this.allOperators = owner.operatorChain.getAllOperators();
this.operatorSnapshotsInProgress = new HashMap<>(allOperators.length);
}

public void executeCheckpointing() throws Exception {
startSyncPartNano = System.nanoTime();

try {
for (StreamOperator<?> op : allOperators) {
checkpointStreamOperator(op);
}

if (LOG.isDebugEnabled()) {
LOG.debug(“Finished synchronous checkpoints for checkpoint {} on task {}”,
checkpointMetaData.getCheckpointId(), owner.getName());
}

startAsyncPartNano = System.nanoTime();

checkpointMetrics.setSyncDurationMillis((startAsyncPartNano – startSyncPartNano) / 1_000_000);

// we are transferring ownership over snapshotInProgressList for cleanup to the thread, active on submit
AsyncCheckpointRunnable asyncCheckpointRunnable = new AsyncCheckpointRunnable(
owner,
operatorSnapshotsInProgress,
checkpointMetaData,
checkpointMetrics,
startAsyncPartNano);

owner.cancelables.registerCloseable(asyncCheckpointRunnable);
owner.asyncOperationsThreadPool.submit(asyncCheckpointRunnable);

if (LOG.isDebugEnabled()) {
LOG.debug(“{} – finished synchronous part of checkpoint {}. ” +
“Alignment duration: {} ms, snapshot duration {} ms”,
owner.getName(), checkpointMetaData.getCheckpointId(),
checkpointMetrics.getAlignmentDurationNanos() / 1_000_000,
checkpointMetrics.getSyncDurationMillis());
}
} catch (Exception ex) {
// Cleanup to release resources
for (OperatorSnapshotFutures operatorSnapshotResult : operatorSnapshotsInProgress.values()) {
if (null != operatorSnapshotResult) {
try {
operatorSnapshotResult.cancel();
} catch (Exception e) {
LOG.warn(“Could not properly cancel an operator snapshot result.”, e);
}
}
}

if (LOG.isDebugEnabled()) {
LOG.debug(“{} – did NOT finish synchronous part of checkpoint {}. ” +
“Alignment duration: {} ms, snapshot duration {} ms”,
owner.getName(), checkpointMetaData.getCheckpointId(),
checkpointMetrics.getAlignmentDurationNanos() / 1_000_000,
checkpointMetrics.getSyncDurationMillis());
}

owner.synchronousCheckpointExceptionHandler.tryHandleCheckpointException(checkpointMetaData, ex);
}
}

@SuppressWarnings(“deprecation”)
private void checkpointStreamOperator(StreamOperator<?> op) throws Exception {
if (null != op) {

OperatorSnapshotFutures snapshotInProgress = op.snapshotState(
checkpointMetaData.getCheckpointId(),
checkpointMetaData.getTimestamp(),
checkpointOptions,
storageLocation);
operatorSnapshotsInProgress.put(op.getOperatorID(), snapshotInProgress);
}
}

private enum AsyncCheckpointState {
RUNNING,
DISCARDED,
COMPLETED
}
}
CheckpointingOperation 定义在 StreamTask 类里头,executeCheckpointing 方法先对所有的 StreamOperator 执行 checkpointStreamOperator 操作,checkpointStreamOperator 方法会调用 StreamOperator 的 snapshotState 方法,之后创建 AsyncCheckpointRunnable 任务并提交异步运行
AbstractStreamOperator.snapshotState
flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/operators/AbstractStreamOperator.java
@PublicEvolving
public abstract class AbstractStreamOperator<OUT>
implements StreamOperator<OUT>, Serializable {

@Override
public final OperatorSnapshotFutures snapshotState(long checkpointId, long timestamp, CheckpointOptions checkpointOptions,
CheckpointStreamFactory factory) throws Exception {

KeyGroupRange keyGroupRange = null != keyedStateBackend ?
keyedStateBackend.getKeyGroupRange() : KeyGroupRange.EMPTY_KEY_GROUP_RANGE;

OperatorSnapshotFutures snapshotInProgress = new OperatorSnapshotFutures();

try (StateSnapshotContextSynchronousImpl snapshotContext = new StateSnapshotContextSynchronousImpl(
checkpointId,
timestamp,
factory,
keyGroupRange,
getContainingTask().getCancelables())) {

snapshotState(snapshotContext);

snapshotInProgress.setKeyedStateRawFuture(snapshotContext.getKeyedStateStreamFuture());
snapshotInProgress.setOperatorStateRawFuture(snapshotContext.getOperatorStateStreamFuture());

if (null != operatorStateBackend) {
snapshotInProgress.setOperatorStateManagedFuture(
operatorStateBackend.snapshot(checkpointId, timestamp, factory, checkpointOptions));
}

if (null != keyedStateBackend) {
snapshotInProgress.setKeyedStateManagedFuture(
keyedStateBackend.snapshot(checkpointId, timestamp, factory, checkpointOptions));
}
} catch (Exception snapshotException) {
try {
snapshotInProgress.cancel();
} catch (Exception e) {
snapshotException.addSuppressed(e);
}

String snapshotFailMessage = “Could not complete snapshot ” + checkpointId + ” for operator ” +
getOperatorName() + “.”;

if (!getContainingTask().isCanceled()) {
LOG.info(snapshotFailMessage, snapshotException);
}
throw new Exception(snapshotFailMessage, snapshotException);
}

return snapshotInProgress;
}

/**
* Stream operators with state, which want to participate in a snapshot need to override this hook method.
*
* @param context context that provides information and means required for taking a snapshot
*/
public void snapshotState(StateSnapshotContext context) throws Exception {
final KeyedStateBackend<?> keyedStateBackend = getKeyedStateBackend();
//TODO all of this can be removed once heap-based timers are integrated with RocksDB incremental snapshots
if (keyedStateBackend instanceof AbstractKeyedStateBackend &&
((AbstractKeyedStateBackend<?>) keyedStateBackend).requiresLegacySynchronousTimerSnapshots()) {

KeyedStateCheckpointOutputStream out;

try {
out = context.getRawKeyedOperatorStateOutput();
} catch (Exception exception) {
throw new Exception(“Could not open raw keyed operator state stream for ” +
getOperatorName() + ‘.’, exception);
}

try {
KeyGroupsList allKeyGroups = out.getKeyGroupList();
for (int keyGroupIdx : allKeyGroups) {
out.startNewKeyGroup(keyGroupIdx);

timeServiceManager.snapshotStateForKeyGroup(
new DataOutputViewStreamWrapper(out), keyGroupIdx);
}
} catch (Exception exception) {
throw new Exception(“Could not write timer service of ” + getOperatorName() +
” to checkpoint state stream.”, exception);
} finally {
try {
out.close();
} catch (Exception closeException) {
LOG.warn(“Could not close raw keyed operator state stream for {}. This ” +
“might have prevented deleting some state data.”, getOperatorName(), closeException);
}
}
}
}

//……
}
AbstractStreamOperator 的 snapshotState 方法只有在 keyedStateBackend 是 AbstractKeyedStateBackend 类型,而且 requiresLegacySynchronousTimerSnapshots 为 true 的条件下才会操作,具体是触发 timeServiceManager.snapshotStateForKeyGroup(new DataOutputViewStreamWrapper(out), keyGroupIdx);不过它有不同的子类可能覆盖了 snapshotState 方法,比如 AbstractUdfStreamOperator
AbstractUdfStreamOperator
flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/operators/AbstractUdfStreamOperator.java
@PublicEvolving
public abstract class AbstractUdfStreamOperator<OUT, F extends Function>
extends AbstractStreamOperator<OUT>
implements OutputTypeConfigurable<OUT> {

@Override
public void snapshotState(StateSnapshotContext context) throws Exception {
super.snapshotState(context);
StreamingFunctionUtils.snapshotFunctionState(context, getOperatorStateBackend(), userFunction);
}

//……
}
AbstractUdfStreamOperator 覆盖了父类 AbstractStreamOperator 的 snapshotState 方法,新增了 StreamingFunctionUtils.snapshotFunctionState 操作
StreamingFunctionUtils.snapshotFunctionState
flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/util/functions/StreamingFunctionUtils.java
@Internal
public final class StreamingFunctionUtils {

public static void snapshotFunctionState(
StateSnapshotContext context,
OperatorStateBackend backend,
Function userFunction) throws Exception {

Preconditions.checkNotNull(context);
Preconditions.checkNotNull(backend);

while (true) {

if (trySnapshotFunctionState(context, backend, userFunction)) {
break;
}

// inspect if the user function is wrapped, then unwrap and try again if we can snapshot the inner function
if (userFunction instanceof WrappingFunction) {
userFunction = ((WrappingFunction<?>) userFunction).getWrappedFunction();
} else {
break;
}
}
}

private static boolean trySnapshotFunctionState(
StateSnapshotContext context,
OperatorStateBackend backend,
Function userFunction) throws Exception {

if (userFunction instanceof CheckpointedFunction) {
((CheckpointedFunction) userFunction).snapshotState(context);

return true;
}

if (userFunction instanceof ListCheckpointed) {
@SuppressWarnings(“unchecked”)
List<Serializable> partitionableState = ((ListCheckpointed<Serializable>) userFunction).
snapshotState(context.getCheckpointId(), context.getCheckpointTimestamp());

ListState<Serializable> listState = backend.
getSerializableListState(DefaultOperatorStateBackend.DEFAULT_OPERATOR_STATE_NAME);

listState.clear();

if (null != partitionableState) {
try {
for (Serializable statePartition : partitionableState) {
listState.add(statePartition);
}
} catch (Exception e) {
listState.clear();

throw new Exception(“Could not write partitionable state to operator ” +
“state backend.”, e);
}
}

return true;
}

return false;
}

//……
}
snapshotFunctionState 方法,这里执行了 trySnapshotFunctionState 操作,这里 userFunction 的类型,如果实现了 CheckpointedFunction 接口,则调用 CheckpointedFunction.snapshotState,如果实现了 ListCheckpointed 接口,则调用 ListCheckpointed.snapshotState 方法,注意这里先 clear 了 ListState,然后调用 ListState.add 方法将返回的 List 添加到 ListState 中
小结

flink 的 CheckpointCoordinatorDeActivator 在 job 的 status 为 RUNNING 的时候会触发 CheckpointCoordinator 的 startCheckpointScheduler,非 RUNNING 的时候调用 CheckpointCoordinator 的 stopCheckpointScheduler 方法
CheckpointCoordinator 的 startCheckpointScheduler 主要是注册了 ScheduledTrigger 任务,其 run 方法执行 triggerCheckpoint 操作,triggerCheckpoint 方法在真正触发 checkpoint 之前会进行一系列的校验,不满足则立刻 fail fast,其中可能的原因有(CheckpointDeclineReason.TOO_MANY_CONCURRENT_CHECKPOINTS、CheckpointDeclineReason.MINIMUM_TIME_BETWEEN_CHECKPOINTS、NOT_ALL_REQUIRED_TASKS_RUNNING);满足条件的话,就是挨个遍历 executions,调用 Execution.triggerCheckpoint,它借助 taskManagerGateway.triggerCheckpoint 来通过 rpc 调用 TaskExecutor 的 triggerCheckpoint 方法
TaskExecutor 的 triggerCheckpoint 主要是调用 Task 的 triggerCheckpointBarrier 方法,后者主要是异步执行一个 runnable,里头的 run 方法是调用 invokable.triggerCheckpoint,这里的 invokable 为 SourceStreamTask,而它主要是调用父类 StreamTask 的 triggerCheckpoint 方法,该方法的主要逻辑在 performCheckpoint 操作上;performCheckpoint 在 isRunning 为 true 的时候,分了三步来处理,第一步执行 operatorChain.prepareSnapshotPreBarrier,第二步执行 operatorChain.broadcastCheckpointBarrier,第三步执行 checkpointState 方法,checkpointState 里头创建 CheckpointingOperation,然后调用 checkpointingOperation.executeCheckpointing()
CheckpointingOperation 的 executeCheckpointing 方法会对所有的 StreamOperator 执行 checkpointStreamOperator 操作,而 checkpointStreamOperator 方法会调用 StreamOperator 的 snapshotState 方法;AbstractStreamOperator 的 snapshotState 方法只有在 keyedStateBackend 是 AbstractKeyedStateBackend 类型,而且 requiresLegacySynchronousTimerSnapshots 为 true 的条件下才会操作
AbstractUdfStreamOperator 覆盖了父类 AbstractStreamOperator 的 snapshotState 方法,新增了 StreamingFunctionUtils.snapshotFunctionState 操作,该操作会根据 userFunction 的类型调用相应的方法(如果实现了 CheckpointedFunction 接口,则调用 CheckpointedFunction.snapshotState,如果实现了 ListCheckpointed 接口,则调用 ListCheckpointed.snapshotState 方法)

doc
Working with State

正文完
 0