【开发必看】你真的了解回流和重绘吗?

39次阅读

共计 5746 个字符,预计需要花费 15 分钟才能阅读完成。

本文由云 + 社区发表
回流和重绘可以说是每一个 web 开发者都经常听到的两个词语,可是可能有很多人不是很清楚这两步具体做了什么事情。最近有空对其进行了一些研究,看了一些博客和书籍,整理了一些内容并且结合一些例子,写了这篇文章,希望可以帮助到大家。
浏览器的渲染过程
本文先从浏览器的渲染过程来从头到尾的讲解一下回流重绘,如果大家想直接看如何减少回流和重绘,优化性能,可以跳到后面。(这个渲染过程来自 MDN)
浏览器渲染过程
添加描述
从上面这个图上,我们可以看到,浏览器渲染过程如下:

解析 HTML,生成 DOM 树,解析 CSS,生成 CSSOM 树
将 DOM 树和 CSSOM 树结合,生成渲染树(Render Tree)
Layout(回流): 根据生成的渲染树,进行回流(Layout),得到节点的几何信息(位置,大小)
Painting(重绘): 根据渲染树以及回流得到的几何信息,得到节点的绝对像素
Display: 将像素发送给 GPU,展示在页面上。(这一步其实还有很多内容,比如会在 GPU 将多个合成层合并为同一个层,并展示在页面中。而 css3 硬件加速的原理则是新建合成层,这里我们不展开,之后有机会会写一篇博客)

渲染过程看起来很简单,让我们来具体了解下每一步具体做了什么。
生成渲染树
渲染树构建
为了构建渲染树,浏览器主要完成了以下工作:

从 DOM 树的根节点开始遍历每个可见节点。
对于每个可见的节点,找到 CSSOM 树中对应的规则,并应用它们。
根据每个可见节点以及其对应的样式,组合生成渲染树。

第一步中,既然说到了要遍历可见的节点,那么我们得先知道,什么节点是不可见的。不可见的节点包括:

一些不会渲染输出的节点,比如 script、meta、link 等。
一些通过 css 进行隐藏的节点。比如 display:none。注意,利用 visibility 和 opacity 隐藏的节点,还是会显示在渲染树上的。只有 display:none 的节点才不会显示在渲染树上。

从上面的例子来讲,我们可以看到 span 标签的样式有一个 display:none,因此,它最终并没有在渲染树上。
注意:渲染树只包含可见的节点
回流
前面我们通过构造渲染树,我们将可见 DOM 节点以及它对应的样式结合起来,可是我们还需要计算它们在设备视口 (viewport) 内的确切位置和大小,这个计算的阶段就是回流。
为了弄清每个对象在网站上的确切大小和位置,浏览器从渲染树的根节点开始遍历,我们可以以下面这个实例来表示:
<!DOCTYPE html>
<html>
<head>
<meta name=”viewport” content=”width=device-width,initial-scale=1″>
<title>Critial Path: Hello world!</title>
</head>
<body>
<div style=”width: 50%”>
<div style=”width: 50%”>Hello world!</div>
</div>
</body>
</html>
我们可以看到,第一个 div 将节点的显示尺寸设置为视口宽度的 50%,第二个 div 将其尺寸设置为父节点的 50%。而在回流这个阶段,我们就需要根据视口具体的宽度,将其转为实际的像素值。(如下图)
回流
重绘
最终,我们通过构造渲染树和回流阶段,我们知道了哪些节点是可见的,以及可见节点的样式和具体的几何信息(位置、大小),那么我们就可以将渲染树的每个节点都转换为屏幕上的实际像素,这个阶段就叫做重绘节点。
既然知道了浏览器的渲染过程后,我们就来探讨下,何时会发生回流重绘。
何时发生回流重绘
我们前面知道了,回流这一阶段主要是计算节点的位置和几何信息,那么当页面布局和几何信息发生变化的时候,就需要回流。比如以下情况:

添加或删除可见的 DOM 元素
元素的位置发生变化
元素的尺寸发生变化(包括外边距、内边框、边框大小、高度和宽度等)
内容发生变化,比如文本变化或图片被另一个不同尺寸的图片所替代。
页面一开始渲染的时候(这肯定避免不了)
浏览器的窗口尺寸变化(因为回流是根据视口的大小来计算元素的位置和大小的)

注意:回流一定会触发重绘,而重绘不一定会回流
根据改变的范围和程度,渲染树中或大或小的部分需要重新计算,有些改变会触发整个页面的重排,比如,滚动条出现的时候或者修改了根节点。
浏览器的优化机制
现代的浏览器都是很聪明的,由于每次重排都会造成额外的计算消耗,因此大多数浏览器都会通过队列化修改并批量执行来优化重排过程。浏览器会将修改操作放入到队列里,直到过了一段时间或者操作达到了一个阈值,才清空队列。但是!当你获取布局信息的操作的时候,会强制队列刷新,比如当你访问以下属性或者使用以下方法:

offsetTop、offsetLeft、offsetWidth、offsetHeight
scrollTop、scrollLeft、scrollWidth、scrollHeight
clientTop、clientLeft、clientWidth、clientHeight
getComputedStyle()
getBoundingClientRect
具体可以访问这个网站:https://gist.github.com/pauli…

以上属性和方法都需要返回最新的布局信息,因此浏览器不得不清空队列,触发回流重绘来返回正确的值。因此,我们在修改样式的时候,最好避免使用上面列出的属性,他们都会刷新渲染队列。如果要使用它们,最好将值缓存起来。
减少回流和重绘
好了,到了我们今天的重头戏,前面说了这么多背景和理论知识,接下来让我们谈谈如何减少回流和重绘。
最小化重绘和重排
由于重绘和重排可能代价比较昂贵,因此最好就是可以减少它的发生次数。为了减少发生次数,我们可以合并多次对 DOM 和样式的修改,然后一次处理掉。考虑这个例子
const el = document.getElementById(‘test’);
el.style.padding = ‘5px’;
el.style.borderLeft = ‘1px’;
el.style.borderRight = ‘2px’;
例子中,有三个样式属性被修改了,每一个都会影响元素的几何结构,引起回流。当然,大部分现代浏览器都对其做了优化,因此,只会触发一次重排。但是如果在旧版的浏览器或者在上面代码执行的时候,有其他代码访问了布局信息(上文中的会触发回流的布局信息),那么就会导致三次重排。
因此,我们可以合并所有的改变然后依次处理,比如我们可以采取以下的方式:
使用 cssText
const el = document.getElementById(‘test’);
el.style.cssText += ‘border-left: 1px; border-right: 2px; padding: 5px;’;
修改 CSS 的 class
const el = document.getElementById(‘test’);
el.className += ‘ active’;
批量修改 DOM
当我们需要对 DOM 对一系列修改的时候,可以通过以下步骤减少回流重绘次数:

使元素脱离文档流
对其进行多次修改
将元素带回到文档中。

该过程的第一步和第三步可能会引起回流,但是经过第一步之后,对 DOM 的所有修改都不会引起回流重绘,因为它已经不在渲染树了。
有三种方式可以让 DOM 脱离文档流:

隐藏元素,应用修改,重新显示
使用文档片段 (document fragment) 在当前 DOM 之外构建一个子树,再把它拷贝回文档。
将原始元素拷贝到一个脱离文档的节点中,修改节点后,再替换原始的元素。

考虑我们要执行一段批量插入节点的代码:
function appendDataToElement(appendToElement, data) {
let li;
for (let i = 0; i < data.length; i++) {
li = document.createElement(‘li’);
li.textContent = ‘text’;
appendToElement.appendChild(li);
}
}

const ul = document.getElementById(‘list’);
appendDataToElement(ul, data);
如果我们直接这样执行的话,由于每次循环都会插入一个新的节点,会导致浏览器回流一次。
我们可以使用这三种方式进行优化:
隐藏元素,应用修改,重新显示
这个会在展示和隐藏节点的时候,产生两次回流
function appendDataToElement(appendToElement, data) {
let li;
for (let i = 0; i < data.length; i++) {
li = document.createElement(‘li’);
li.textContent = ‘text’;
appendToElement.appendChild(li);
}
}
const ul = document.getElementById(‘list’);
ul.style.display = ‘none’;
appendDataToElement(ul, data);
ul.style.display = ‘block’;
使用文档片段 (document fragment) 在当前 DOM 之外构建一个子树,再把它拷贝回文档
const ul = document.getElementById(‘list’);
const fragment = document.createDocumentFragment();
appendDataToElement(fragment, data);
ul.appendChild(fragment);
将原始元素拷贝到一个脱离文档的节点中,修改节点后,再替换原始的元素。
const ul = document.getElementById(‘list’);
const clone = ul.cloneNode(true);
appendDataToElement(clone, data);
ul.parentNode.replaceChild(clone, ul);
对于上面这三种情况,我写了一个 demo 在 safari 和 chrome 上测试修改前和修改后的性能。然而实验结果不是很理想。
原因:原因其实上面也说过了,现代浏览器会使用队列来储存多次修改,进行优化,所以对这个优化方案,我们其实不用优先考虑。
避免触发同步布局事件
上文我们说过,当我们访问元素的一些属性的时候,会导致浏览器强制清空队列,进行强制同步布局。举个例子,比如说我们想将一个 p 标签数组的宽度赋值为一个元素的宽度,我们可能写出这样的代码:
function initP() {
for (let i = 0; i < paragraphs.length; i++) {
paragraphs[i].style.width = box.offsetWidth + ‘px’;
}
}
这段代码看上去是没有什么问题,可是其实会造成很大的性能问题。在每次循环的时候,都读取了 box 的一个 offsetWidth 属性值,然后利用它来更新 p 标签的 width 属性。这就导致了每一次循环的时候,浏览器都必须先使上一次循环中的样式更新操作生效,才能响应本次循环的样式读取操作。每一次循环都会强制浏览器刷新队列。我们可以优化为:
const width = box.offsetWidth;
function initP() {
for (let i = 0; i < paragraphs.length; i++) {
paragraphs[i].style.width = width + ‘px’;
}
}
同样,我也写了个 demo 来比较两者的性能差异。你可以自己点开这个 demo 体验下。这个对比的性能差距就比较明显。
对于复杂动画效果, 使用绝对定位让其脱离文档流
对于复杂动画效果,由于会经常的引起回流重绘,因此,我们可以使用绝对定位,让它脱离文档流。否则会引起父元素以及后续元素频繁的回流。这个我们就直接上个例子。
打开这个例子后,我们可以打开控制台,控制台上会输出当前的帧数(虽然不准)。

添加描述
从上图中,我们可以看到,帧数一直都没到 60。这个时候,只要我们点击一下那个按钮,把这个元素设置为绝对定位,帧数就可以稳定 60。
css3 硬件加速(GPU 加速)
比起考虑如何减少回流重绘,我们更期望的是,根本不要回流重绘。这个时候,css3 硬件加速就闪亮登场啦!!
划重点:
1. 使用 css3 硬件加速,可以让 transform、opacity、filters 这些动画不会引起回流重绘。
2. 对于动画的其它属性,比如 background-color 这些,还是会引起回流重绘的,不过它还是可以提升这些动画的性能。
本篇文章只讨论如何使用,暂不考虑其原理,之后有空会另外开篇文章说明。
如何使用
常见的触发硬件加速的 css 属性:

transform
opacity
filters
Will-change

效果
我们可以先看个例子。我通过使用 chrome 的 Performance 捕获了动画一段时间里的回流重绘情况,实际结果如下图:

添加描述
从图中我们可以看出,在动画进行的时候,没有发生任何的回流重绘。如果感兴趣你也可以自己做下实验。
重点

使用 css3 硬件加速,可以让 transform、opacity、filters 这些动画不会引起回流重绘
对于动画的其它属性,比如 background-color 这些,还是会引起回流重绘的,不过它还是可以提升这些动画的性能。

css3 硬件加速的坑
当然,任何美好的东西都是会有对应的代价的,过犹不及。css3 硬件加速还是有坑的:

如果你为太多元素使用 css3 硬件加速,会导致内存占用较大,会有性能问题。
在 GPU 渲染字体会导致抗锯齿无效。这是因为 GPU 和 CPU 的算法不同。因此如果你不在动画结束的时候关闭硬件加速,会产生字体模糊。

总结
本文主要讲了浏览器的渲染过程、浏览器的优化机制以及如何减少甚至避免回流和重绘,希望可以帮助大家更好的理解回流重绘。
参考文献

渲染树构建、布局及绘制
高性能 Javascript

此文已由作者授权腾讯云 + 社区在各渠道发布
获取更多新鲜技术干货,可以关注我们腾讯云技术社区 - 云加社区官方号及知乎机构号

正文完
 0