共计 8710 个字符,预计需要花费 22 分钟才能阅读完成。
栈和队列
一、对于模仿栈应用何种模型
1. 程序表:尾插尾删很快,缓存利用率高,然而要扩容
2. 单链表:应用链表头作为栈顶来插入删除数据也很快
3. 带头双向循环链表:也能够,工夫也是 O(1)
二、栈的模仿实现
//"stack.h"
typedef int type;
typedef struct stack
{
type* a;
int top;
int capacity;
}st;
//stack.c
#include"stack.h"
void st_init(st* sta)
{assert(sta);
sta->a = NULL;
sta->top = 0;// 数组下标的意思,是数据下一个下标,外面没有值;top = -1, 则是 top 指向最初一个元素
sta->capacity = 0;
}
void st_push(st* sta, type x)
{assert(sta);
if (sta->top == sta->capacity)
{
// 满了
int newcapa = sta->capacity == 0 ? 4 : 2 * sta->capacity;
type* t = realloc(sta->a, sizeof(type) * newcapa);// 扩容;如果 a == NULL,它的行为就和 malloc 一样
if (t == NULL)
{printf("realloc fail\n");
exit(-1);
}
sta->a = t;
sta->capacity = newcapa;
}
sta->a[sta->top] = x;
++sta->top;
}
void st_destroy(st* sta)
{assert(sta);
free(sta->a);
sta->a = NULL;
sta->top = 0;
sta->capacity = 0;
}
void st_pop(st* sta)
{assert(sta);
assert(sta->top > 0);
sta->top--;
}
type st_top(st* sta)
{assert(sta);
assert(sta->top > 0);
return sta->a[sta->top - 1];
}
bool st_empty(st* sta)
{assert(sta);
return sta->top == 0;
}
int st_size(st* sta)
{assert(sta);
return sta->top;
}
三、根底 oj
1. 无效的括号
https://leetcode.cn/problems/valid-parentheses/
给定一个只包含 '('
,')'
,'{'
,'}'
,'['
,']'
的字符串 s
,判断字符串是否无效。
无效字符串需满足:左括号必须用雷同类型的右括号闭合。左括号必须以正确的程序闭合。每个右括号都有一个对应的雷同类型的左括号。
思路:做括号入栈;有括号就和出栈的括号匹配
bool isValid(string s)
{if(s.size()%2 != 0 )return false;
stack<char>st;
for(auto x:s)
{if(x == '(' || x=='[' ||x=='{')
st.push(x);
else
{if(st.empty())return false;
if(st.top() == '(' && x==')')
{st.pop();
continue;
}
else if(st.top() == '[' && x==']')
{st.pop();
continue;
}
else if(st.top() == '{' && x=='}')
{st.pop();
continue;
}
else
return false;
}
}
if(st.empty())
return true;
return false;
}
2. 栈的压入、弹出序列
https://www.nowcoder.com/exam/company?tag=581)
输出两个整数序列,第一个序列示意栈的压入程序,请判断第二个序列是否可能为该栈的弹出程序。假如压入栈的所有数字均不相等。例如序列 1,2,3,4,5 是某栈的压入程序,序列 4,5,3,2,1 是该压栈序列对应的一个弹出序列,但 4,3,5,1,2 就不可能是该压栈序列的弹出序列。
bool IsPopOrder(vector<int> pushV,vector<int> popV)
{
stack<int>st;
int j = 0;
for(auto x:pushV)
{st.push(x);
while(!st.empty() && st.top() == popV[j])
{st.pop();
++j;
}
}
if(st.empty())
return true;
return false;
}
3. 用队列实现栈
https://leetcode.cn/problems/implement-stack-using-queues/
请你仅应用两个队列实现一个后入先出(LIFO)的栈,并反对一般栈的全副四种操作(push
、top
、pop
和 empty
)
typedef int type;
struct queuenode
{
struct queue* next;
type data;
};
typedef struct queue
{
struct queuenode* head;
struct queuenode* tail;
}queue;
void queue_init(queue* q)
{assert(q);
q->head = NULL;
q->tail = NULL;
}
void queue_destroy(queue* q)
{assert(q);
struct queuenode* cur = q->head;
while (cur != NULL)
{
struct queuenode* next = cur->next;
free(cur);
cur = next;
}
q->head = q->tail = NULL;
}
void queue_push(queue* q, type x)
{assert(q);
struct queuenode* newnode = (struct queuenode*)malloc(sizeof(struct queuenode));
newnode->data = x;
newnode->next = NULL;
if (q->head == NULL)
{q->head = q->tail = newnode;}
else
{
q->tail->next = newnode;
q->tail = newnode;
}
}
void queue_pop(queue* q)
{assert(q);
assert(q->head);
if (q->head == q->tail)
{free(q->head);
q->head = q->tail = NULL;
}
else
{
struct queuenode* next = q->head->next;
free(q->head);
q->head = next;
}
}
bool queue_empty(queue* q)
{assert(q);
return q->head == NULL;
}
struct queuenode* buy_node(type x)
{struct queuenode* newnode = (struct queuenode*)malloc(sizeof(struct queuenode));
newnode->data = x;
newnode->next = NULL;
return newnode;
}
type queue_back(queue* q)
{assert(q);
assert(q->tail);
return q->tail->data;
}
type queue_front(queue* q)
{assert(q);
assert(q->head);
return q->head->data;
}
int queue_size(queue* q)
{if (q->head == NULL)return 0;
if (q->head == q->tail)return 1;
struct queuenode* t = q->head;
int count = 0;
while (t != NULL)
{
++count;
t = t->next;
}
return count;
}
typedef struct
{
queue q1;
queue q2;
} MyStack;
MyStack* myStackCreate() {MyStack *st = (MyStack*)malloc(sizeof(MyStack));
queue_init(&st->q1);
queue_init(&st->q2);
return st;
}
void myStackPush(MyStack* obj, int x) {if(!queue_empty(&obj->q1))
{queue_push(&obj->q1, x);
}
else
{queue_push(&obj->q2, x);
}
}
int myStackPop(MyStack* obj) {
queue* aempty = &obj->q1;
queue* noempty = &obj->q2;
if(!queue_empty(&obj->q1))
{
aempty = &obj->q2;
noempty = &obj->q1;
}
while(queue_size(noempty)>1)
{queue_push(aempty,queue_front(noempty));
queue_pop(noempty);
}
int top = queue_front(noempty);
queue_pop(noempty);
return top;
}
int myStackTop(MyStack* obj) {if(!queue_empty(&obj->q1))
{return queue_back(&obj->q1);
}
else
{return queue_back(&obj->q2);
}
}
bool myStackEmpty(MyStack* obj) {return queue_empty(&obj->q1)&&queue_empty(&obj->q2);
}
void myStackFree(MyStack* obj) {queue_destroy(&obj->q1);
queue_destroy(&obj->q2);
free(obj);
}
4. 用栈实现队列
https://leetcode.cn/problems/implement-queue-using-stacks/
请你仅应用两个栈实现先入先出队列。队列该当反对个别队列反对的所有操作(push
、pop
、peek
、empty
)
typedef int type;
typedef struct stack
{
type* a;
int top;
int capacity;
}st;
typedef struct {
st pushst;
st popst;
} MyQueue;
void st_init(st* sta)
{assert(sta);
sta->a = NULL;
sta->top = 0;// 数组下标的意思,是数据下一个下标,外面没有值;top = -1, 则是 top 指向最初一个元素
sta->capacity = 0;
}
void st_push(st* sta, type x)
{assert(sta);
if (sta->top == sta->capacity)
{
// 满了
int newcapa = sta->capacity == 0 ? 4 : 2 * sta->capacity;
type* t = realloc(sta->a, sizeof(type) * newcapa);// 扩容;如果 a == NULL,它的行为就和 malloc 一样
if (t == NULL)
{printf("realloc fail\n");
exit(-1);
}
sta->a = t;
sta->capacity = newcapa;
}
sta->a[sta->top] = x;
++sta->top;
}
void st_destroy(st* sta)
{assert(sta);
free(sta->a);
sta->a = NULL;
sta->top = 0;
sta->capacity = 0;
}
void st_pop(st* sta)
{assert(sta);
assert(sta->top > 0);
sta->top--;
}
type st_top(st* sta)
{assert(sta);
assert(sta->top > 0);
return sta->a[sta->top - 1];
}
bool st_empty(st* sta)
{assert(sta);
return sta->top == 0;
}
int st_size(st* sta)
{assert(sta);
return sta->top;
}
MyQueue* myQueueCreate() {MyQueue * q = (MyQueue*)malloc(sizeof(MyQueue));
st_init(&q->popst);
st_init(&q->pushst);
return q;
}
void myQueuePush(MyQueue* obj, int x) {st_push(&obj->pushst, x);
}
int myQueuePop(MyQueue* obj) {if(st_empty(&obj->popst))
{while(!st_empty(&obj->pushst))
{st_push(&obj->popst, st_top(&obj->pushst));
st_pop(&obj->pushst);
}
}
type x = st_top(&obj->popst);
st_pop(&obj->popst);
return x;
}
int myQueuePeek(MyQueue* obj) {if(st_empty(&obj->popst))
{while(!st_empty(&obj->pushst))
{st_push(&obj->popst,st_top(&obj->pushst));
st_pop(&obj->pushst);
}
}
return st_top(&obj->popst);
}
bool myQueueEmpty(MyQueue* obj) {return st_empty(&obj->pushst) && st_empty(&obj->popst);
}
void myQueueFree(MyQueue* obj) {st_destroy(&obj->popst);
st_destroy(&obj->pushst);
free(obj);
}
5. 设计循环队列
https://leetcode.cn/problems/design-circular-queue/
设计你的循环队列实现。循环队列是一种线性数据结构,其操作体现基于 FIFO(先进先出)准则并且队尾被连贯在队首之后以造成一个循环。它也被称为“环形缓冲器”。
循环队列的一个益处是咱们能够利用这个队列之前用过的空间。在一个一般队列里,一旦一个队列满了,咱们就不能插入下一个元素,即便在队列后面仍有空间。然而应用循环队列,咱们能应用这些空间去存储新的值。
思路:无论是链表还是数组模仿,都须要空一个格子,来代表曾经满了的状况。head 和 tail 在同一地位时,代表队列为空。tail 的下一个地位是 head 代表队列曾经满了。要存 x 个数据,就须要 x + 1 的空间。
#include<stdbool.h>
typedef struct {
int*a;
int head;
int tail;
int k;
} MyCircularQueue;
MyCircularQueue* myCircularQueueCreate(int k) {MyCircularQueue* q = (MyCircularQueue*)malloc(sizeof(MyCircularQueue));
q->a = (int *)malloc(sizeof(int)* (k + 1));
q->head = q->tail = 0;
q->k = k;
return q;
}
bool myCircularQueueIsEmpty(MyCircularQueue* obj) {return obj->head == obj->tail;}
bool myCircularQueueIsFull(MyCircularQueue* obj) {return (obj->tail + 1)%(obj->k +1) == obj->head;
}
bool myCircularQueueEnQueue(MyCircularQueue* obj, int value) {// 在队列中加数据
if(myCircularQueueIsFull(obj))
return false;
obj->a[obj->tail] = value;
obj->tail = (obj->tail + 1)%(obj->k + 1);
return true;
}
bool myCircularQueueDeQueue(MyCircularQueue* obj) {if(myCircularQueueIsEmpty(obj))
return false;
obj->head = (obj->head + 1)%(obj->k + 1);
return true;
}
int myCircularQueueFront(MyCircularQueue* obj) {if(myCircularQueueIsEmpty(obj))
return -1;
return obj->a[obj->head];
}
int myCircularQueueRear(MyCircularQueue* obj) {if(myCircularQueueIsEmpty(obj))
return -1;
return obj->a[(obj->tail + obj-> k)%(obj->k + 1)];// 留神这里,(tail - 1 + k + 1)%(k + 1),因为 tail- 1 会小于 0,所以须要加上数组长度
}
void myCircularQueueFree(MyCircularQueue* obj) {free(obj->a);
free(obj);
}
四、模仿队列应用的模型
如果应用数组的话,须要在数组头插入删除数据,效率低。所以这里应用单链表实现,并且保护它的尾指针。将队列的头指针和尾指针放入构造体,这样的话批改它们的时候就不须要传二级指针了,而只须要构造体的一级指针。
五、模仿实现队列
//queue.h
typedef int type;
struct queuenode
{
struct queue* next;
type data;
};
// 将指针放在一个构造体中,这样批改他们时就不须要二级指针,而是只须要构造体的一级指针就能够了
typedef struct queue
{
struct queuenode* head;
struct queuenode* tail;
}queue;
//queue.c
#define _CRT_SECURE_NO_WARNINGS 1
#include"queue.h"
void queue_init(queue* q)
{assert(q);
q->head = NULL;
q->tail = NULL;
}
void queue_destroy(queue* q)
{assert(q);
struct queuenode* cur = q->head;
while (cur != NULL)
{
struct queuenode* next = cur->next;
free(cur);
cur = next;
}
q->head = q->tail = NULL;
}
void queue_push(queue* q, type x)
{assert(q);
struct queuenode* newnode = (struct queuenode*)malloc(sizeof(struct queuenode));
newnode->data = x;
newnode->next = NULL;
if (q->head == NULL)
{q->head = q->tail = newnode;}
else
{
q->tail->next = newnode;
q->tail = newnode;
}
}
void queue_pop(queue* q)
{assert(q);
assert(q->head);
if (q->head == q->tail)
{free(q->head);
q->head = q->tail = NULL;
}
else
{
struct queuenode* next = q->head->next;
free(q->head);
q->head = next;
}
}
bool queue_empty(queue* q)
{assert(q);
return q->head == NULL;
}
struct queuenode* buy_node(type x)
{struct queuenode* newnode = (struct queuenode*)malloc(sizeof(struct queuenode));
newnode->data = x;
newnode->next = NULL;
return newnode;
}
type queue_back(queue* q)
{assert(q);
assert(q->tail);
return q->tail->data;
}
type queue_front(queue* q)
{assert(q);
assert(q->head);
return q->head->data;
}
int queue_size(queue* q)
{if (q->head == NULL)return 0;
if (q->head == q->tail)return 1;
struct queuenode* t = q->head;
int count = 0;
while (t != NULL)
{
++count;
t = t->next;
}
return count;
}