上篇文章提到查问时会用到缓存,其内置的两级缓存如下:
// 一级缓存,在executor中,与sqlsession绑定
// org.apache.ibatis.executor.BaseExecutor#localCache
// 指向org.apache.ibatis.cache.impl.PerpetualCache#cache
private Map<Object, Object> cache = new HashMap<>();
// 二级缓存,在MappedStatement中(对应mapper.xml中的一个crud办法),周期与SqlSessionFactory统一
org.apache.ibatis.mapping.MappedStatement#cache
// 最终也指向了org.apache.ibatis.cache.impl.PerpetualCache#cache
private Map<Object, Object> cache = new HashMap<>();
- 一、二级缓存都是查问缓存,select写入,insert、update、delete则革除
- 一、二级缓存均指向
org.apache.ibatis.cache.impl.PerpetualCache#cache
,实质是一个HashMap - 一、二级缓存Key的计算形式统一,均指向
org.apache.ibatis.executor.BaseExecutor#createCacheKey
,Key的实质:statement的id + offset + limit + sql + param参数
- 一级缓存生命周期和SqlSession统一,默认开启;二级缓存申明周期和SqlSessionFactory统一,需手动开启
- 雷同namespace应用同一个二级缓存;二级缓存和事务关联,事务提交数据才会写入缓存,事务回滚则不会写入
接下来通过源码别离来看一下。
一级缓存
一级缓存的生命周期是sqlSession;在同一sqlSession中,用雷同sql和查问条件屡次查问DB状况,非首次查问会命中一级缓存。
一级缓存默认是开启的,如果想敞开须要减少配置
// == 如果不设置,默认是SESSION(后续的源码剖析会波及这里)
<setting name="localCacheScope" value="STATEMENT"/>
以查询方法作为入口
org.apache.ibatis.session.defaults.DefaultSqlSession#selectList(java.lang.String, java.lang.Object, org.apache.ibatis.session.RowBounds)
org.apache.ibatis.executor.BaseExecutor#query(org.apache.ibatis.mapping.MappedStatement, java.lang.Object, org.apache.ibatis.session.RowBounds, org.apache.ibatis.session.ResultHandler)
List<E> query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler) throws SQLException {
BoundSql boundSql = ms.getBoundSql(parameter);
// == 计算CacheKey
CacheKey key = createCacheKey(ms, parameter, rowBounds, boundSql);
// == 查问中应用缓存
return query(ms, parameter, rowBounds, resultHandler, key, boundSql);
}
CacheKey计算
org.apache.ibatis.executor.BaseExecutor#createCacheKey
CacheKey createCacheKey(MappedStatement ms, Object parameterObject, RowBounds rowBounds, BoundSql boundSql) {
CacheKey cacheKey = new CacheKey();
// == 调用update办法批改cache
cacheKey.update(ms.getId());
cacheKey.update(rowBounds.getOffset());
cacheKey.update(rowBounds.getLimit());
cacheKey.update(boundSql.getSql());
// value是参数
cacheKey.update(value);
return cacheKey;
}
从这里就能够猜测到,CacheKey和statement的id、offset、limit、sql、param参数无关。
进入CacheKey验证这个猜想:
### CacheKey类 ###
// 默认37
private final int multiplier;
// 默认17
private int hashcode;
private long checksum;
private int count;
private List<Object> updateList;
public void update(Object object) {
int baseHashCode = object == null ? 1 : ArrayUtil.hashCode(object);
// -- 批改几个属性值
count++;
checksum += baseHashCode;
baseHashCode *= count;
hashcode = multiplier * hashcode + baseHashCode;
// -- updateList新增对象
updateList.add(object);
}
public boolean equals(Object object) {
// -- 比拟几个属性值
if (hashcode != cacheKey.hashcode) {
return false;
}
if (checksum != cacheKey.checksum) {
return false;
}
if (count != cacheKey.count) {
return false;
}
// -- 挨个比拟updateList中的对象
for (int i = 0; i < updateList.size(); i++) {
Object thisObject = updateList.get(i);
Object thatObject = cacheKey.updateList.get(i);
if (!ArrayUtil.equals(thisObject, thatObject)) {
return false;
}
}
return true;
}
查问中应用缓存
org.apache.ibatis.executor.BaseExecutor#query(org.apache.ibatis.mapping.MappedStatement, java.lang.Object, org.apache.ibatis.session.RowBounds, org.apache.ibatis.session.ResultHandler, org.apache.ibatis.cache.CacheKey, org.apache.ibatis.mapping.BoundSql)
List<E> query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException {
List<E> list;
try {
queryStack++;
// == 1.先从localCache获取数据
list = resultHandler == null ? (List<E>) localCache.getObject(key) : null;
if (list != null) {
handleLocallyCachedOutputParameters(ms, key, parameter, boundSql);
}
// == 2.缓存中无数据,从数据库查问
else {
list = queryFromDatabase(ms, parameter, rowBounds, resultHandler, key, boundSql);
}
}
// ## 如果scope设置成STATEMENT类型,会清理一级缓存
if (configuration.getLocalCacheScope() == LocalCacheScope.STATEMENT) {
// 清理缓存
clearLocalCache();
}
return list;
}
持续察看代码2
地位:
List<E> queryFromDatabase(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException {
List<E> list;
// 缓存占位,示意正在执行
localCache.putObject(key, EXECUTION_PLACEHOLDER);
try {
// == 查问DB逻辑
list = doQuery(ms, parameter, rowBounds, resultHandler, boundSql);
} finally {
localCache.removeObject(key);
}
// == 执行后果放入一级缓存
localCache.putObject(key, list);
if (ms.getStatementType() == StatementType.CALLABLE) {
localOutputParameterCache.putObject(key, parameter);
}
return list;
}
综上,查问过程会向localCache中寄存查问后果。
只不过设置scope为STATEMENT时,每次都会清空缓存——这就是一级缓存生效的机密。
增删改清理缓存
insert和delete办法都会执行update:
public int insert(String statement) {
return insert(statement, null);
}
public int delete(String statement) {
return update(statement, null);
}
于是察看update即可:
int update(MappedStatement ms, Object parameter) throws SQLException {
ErrorContext.instance().resource(ms.getResource()).activity("executing an update").object(ms.getId());
if (closed) {
throw new ExecutorException("Executor was closed.");
}
// == 清理一级缓存
clearLocalCache();
return doUpdate(ms, parameter);
}
二级缓存
二级缓存须要关上开关:
- 第1步
<setting name="cacheEnabled" value="STATEMENT"/>
- 第二步
同时在mapper.xml中减少标签
<cache/>
默认的,二级缓存的key是namespace,如果要援用其它命名空间的Cache配置,能够应用如下标签:
<cache-ref namespace="xxx"/>
CachingExecutor
二级缓存的入口在executor创立地位:
public Executor newExecutor(Transaction transaction, ExecutorType executorType) {
Executor executor;
if (ExecutorType.BATCH == executorType) {
executor = new BatchExecutor(this, transaction);
} else if (ExecutorType.REUSE == executorType) {
executor = new ReuseExecutor(this, transaction);
} else {
// 默认创立SimpleExecutor
executor = new SimpleExecutor(this, transaction);
}
if (cacheEnabled) {
// == 开启二级缓存状况,应用装璜器模式用CachingExecutor包了一层
executor = new CachingExecutor(executor);
}
return executor;
}
察看结构器里做了什么
// 属性相互赋值
public CachingExecutor(Executor delegate) {
this.delegate = delegate;
delegate.setExecutorWrapper(this);
}
赋值后CachingExecutor和SimpleExecutor的关系如下
晓得这一点后,咱们来查看CachingExecutor的query办法:
public <E> List<E> query(MappedStatement ms, Object parameterObject, RowBounds rowBounds, ResultHandler resultHandler) throws SQLException {
BoundSql boundSql = ms.getBoundSql(parameterObject);
// == 调用delegate的createCacheKey办法(后面曾经剖析过)
CacheKey key = createCacheKey(ms, parameterObject, rowBounds, boundSql);
// == 二级缓存的查问
return query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
}
察看query办法的实现
public <E> List<E> query(MappedStatement ms, Object parameterObject, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql)
throws SQLException {
// ## A.通过MappedStatement获取cache
Cache cache = ms.getCache();
if (cache != null) {
// 缓存刷新
flushCacheIfRequired(ms);
if (ms.isUseCache() && resultHandler == null) {
ensureNoOutParams(ms, boundSql);
// -- 1.通过tcm获取查问后果
List<E> list = (List<E>) tcm.getObject(cache, key);
if (list == null) {
// -- 2.tcm中无后果,通过原executor查问(一级缓存+jdbc逻辑)
list = delegate.query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
// -- 3.查问后果最终放入tcm中
tcm.putObject(cache, key, list);
}
return list;
}
}
return delegate.query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
}
// ## B.tcm指向这里
TransactionalCacheManager tcm = new TransactionalCacheManager();
整顿逻辑很简略,但又有两个问题困扰到我
- 通过MappedStatement获取到的二级缓存cache(
代码A
地位),什么时候初始化的? - 二级缓存和tcm(TransactionalCacheManager)之间有什么分割?
二级缓存初始化
沿着cache倒推,能追溯到Mapper解析。
残缺调用链如下(当作温习了):
// 创立SqlSessionFactory
org.apache.ibatis.session.SqlSessionFactoryBuilder#build(java.io.Reader, java.lang.String, java.util.Properties)
org.apache.ibatis.builder.xml.XMLConfigBuilder#parse
// configuration解析
org.apache.ibatis.builder.xml.XMLConfigBuilder#parseConfiguration
// 解析mapper
org.apache.ibatis.builder.xml.XMLConfigBuilder#mapperElement
org.apache.ibatis.builder.xml.XMLMapperBuilder#parse
org.apache.ibatis.builder.xml.XMLMapperBuilder#configurationElement{
// == 二级缓存的配置援用(执行namespace)
cacheRefElement(context.evalNode("cache-ref"));
// == 二级缓存的开启
cacheElement(context.evalNode("cache"));
}
org.apache.ibatis.builder.xml.XMLMapperBuilder#cacheElement
org.apache.ibatis.builder.MapperBuilderAssistant#useNewCache{
// == 二级缓存创立
Cache cache = new CacheBuilder(currentNamespace)
// -- Cache实现是PerpetualCache
.implementation(valueOrDefault(typeClass, PerpetualCache.class))
// -- 包装器用了LruCache
.addDecorator(valueOrDefault(evictionClass, LruCache.class))
.clearInterval(flushInterval)
.size(size)
.readWrite(readWrite)
.blocking(blocking)
.properties(props)
.build();
}
看下二级缓存的整个装璜链(盗图)
SynchronizedCache -> LoggingCache -> SerializedCache -> LruCache -> PerpetualCache。
二级缓存和TransactionalCacheManager的关系
TransactionalCacheManager类:
// ## 保护一个map,key是Cache,value是TransactionalCache
Map<Cache, TransactionalCache> transactionalCaches = new HashMap<>();
public Object getObject(Cache cache, CacheKey key) {
// ## 1.此办法会在transactionalCaches中建设k-v关系
return getTransactionalCache(cache)
⬇⬇⬇⬇⬇⬇
transactionalCaches.computeIfAbsent(cache, TransactionalCache::new);
// == 2.从二级缓存中获取
.getObject(key);
}
再察看TransactionalCache
// == 二级缓存
private final Cache delegate;
// == 二级缓存清理标记
private boolean clearOnCommit;
// #### 以下两个汇合能够了解为用来寄存长期数据 ####
// == 等事务提交时,须要退出二级缓存的对象
private final Map<Object, Object> entriesToAddOnCommit;
// == 二级缓存中不存在的对象key
private final Set<Object> entriesMissedInCache;
public void putObject(Object key, Object object) {
// 对象记录到entriesToAddOnCommit中
entriesToAddOnCommit.put(key, object);
}
public Object getObject(Object key) {
// 从二级缓存获取
Object object = delegate.getObject(key);
if (object == null) {
// 二级缓存中不存在,在entriesMissedInCache记录key
entriesMissedInCache.add(key);
}
}
这里可能看出,二级缓存和Transaction(事务)有很深的瓜葛。
那么具体有什么瓜葛?
- 事务提交
察看TransactionManager的commit办法:
org.apache.ibatis.cache.TransactionalCacheManager#commit
org.apache.ibatis.cache.decorators.TransactionalCache#commit
public void commit() {
// == 刷新对象
flushPendingEntries();
}
private void flushPendingEntries() {
for (Map.Entry<Object, Object> entry : entriesToAddOnCommit.entrySet()) {
// == 对象从entriesToAddOnCommit刷新到二级缓存中
delegate.putObject(entry.getKey(), entry.getValue());
}
}
此处能证实,事务提交时对象从一个长期汇合entriesToAddOnCommit刷新至二级缓存。
- 事务回滚
再察看回滚办法
org.apache.ibatis.cache.decorators.TransactionalCache#rollback
public void rollback() {
unlockMissedEntries();
// == 重置,将长期汇合数据清理
reset();
}
private void reset() {
clearOnCommit = false;
entriesToAddOnCommit.clear();
entriesMissedInCache.clear();
}
附录
P6-P7常识合辑
发表回复