关于数据挖掘:R语言统计学DOE实验设计用平衡不完全区组设计BIBD分析纸飞机飞行时间实验数据

52次阅读

共计 4061 个字符,预计需要花费 11 分钟才能阅读完成。

全文链接:http://tecdat.cn/?p=31010

原文出处:拓端数据部落公众号

均衡不齐全区组设计(BIBD)是一个很好的钻研实验设计,具备从统计的角度看各种所需的特色。

最近咱们被要求撰写对于 BIBD 的钻研报告,包含一些图形和统计输入。

对于一个 BIBD 有 K 个观测,反复 r 次试验。还有第 5 参数 lamda,记录其中每对医治产生在设计块的数目。

生成一组 BIBD 设计,设计行列和每块的元素具体数目。如果 BIBD(b,v,r,k)存在则:1=v

咱们设置区组

BIB(7,7, 4, 2)

##      [,1] [,2] [,3] [,4]  
## [1,]    2    3    5    6  
## [2,]    3    4    6    7  
## [3,]    1    2    4    6  
## [4,]    1    5    6    7  
## [5,]    2    4    5    7  
## [6,]    1    2    3    7  
## [7,]    1    3    4    5

这种设计不是 BIBD,因为解决不是所有反复的设计都有雷同的次数,咱们能够通过 isGUID 查看。对于本例:

BIB(7,7, 4, 2)

##      [,1] [,2] [,3] [,4]  
## [1,]    2    3    5    6  
## [2,]    1    5    6    7  
## [3,]    2    4    5    7  
## [4,]    1    2    4    6  
## [5,]    1    2    3    7  
## [6,]    3    4    6    7  
## [7,]    1    3    4    5

而后,咱们批改参数,来查看该模型是否生产 BIBD

my.design

##      [,1] [,2] [,3]  
## [1,]    1    2    6  
## [2,]    2    3    7  
## [3,]    1    4    7  
## [4,]    3    4    6  
## [5,]    1    3    5  
## [6,]    2    4    5  
## [7,]    5    6    7


##  
## [1] The design is a balanced incomplete block design w.r.t. rows.

从后果来看,该设计是一个均衡不齐全区组设计。在这种状况下,咱们可能生成无效 BIBD 试验应用指定的参数。

剖析 Box-Behnken 设计

Box-Behnken 设计的低劣在于,能够将其利用于剖析 2 至 5 个因子的试验。

上面将其扩大到回归模型的实验设计中,比方在上面的一个纸飞机的航行工夫的试验。这是另一个多种因子的试验,在四个变量。
这些数据曾经被编码。原始的变量是机翼面积 A,翼状 R,机身宽度 W,和身材长度 L,在数据集中的每个观测代表的 10 次反复的的纸飞机在每个试验条件下的后果。咱们在这里钻研均匀航行工夫。

应用响应曲面法对变量进行回归模型拟合

查看模型后果


summary(heli.rsm)

##  
## Call:  
## rsm(formula = ave ~ block + SO(x1, x2, x3, x4), data = heli)  
##  
##               Estimate Std. Error  t value  Pr(>|t|)     
## (Intercept) 372.800000   1.506375 247.4815 < 2.2e-16 ***  
## block2       -2.950000   1.207787  -2.4425 0.0284522 *   
## x1           -0.083333   0.636560  -0.1309 0.8977075     
## x2            5.083333   0.636560   7.9856 1.398e-06 ***  
## x3            0.250000   0.636560   0.3927 0.7004292     
## x4           -6.083333   0.636560  -9.5566 1.633e-07 ***  
## x1:x2        -2.875000   0.779623  -3.6877 0.0024360 **  
## x1:x3        -3.750000   0.779623  -4.8100 0.0002773 ***  
## x1:x4         4.375000   0.779623   5.6117 6.412e-05 ***  
## x2:x3         4.625000   0.779623   5.9324 3.657e-05 ***  
## x2:x4        -1.500000   0.779623  -1.9240 0.0749257 .   
## x3:x4        -2.125000   0.779623  -2.7257 0.0164099 *   
## x1^2         -2.037500   0.603894  -3.3739 0.0045424 **  
## x2^2         -1.662500   0.603894  -2.7530 0.0155541 *   
## x3^2         -2.537500   0.603894  -4.2019 0.0008873 ***  
## x4^2         -0.162500   0.603894  -0.2691 0.7917877     
## ---  
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
##  
## Multiple R-squared:  0.9555, Adjusted R-squared:  0.9078  
## F-statistic: 20.04 on 15 and 14 DF,  p-value: 6.54e-07  
##  
## Analysis of Variance Table  
##  
## Response: ave  
##                     Df  Sum Sq Mean Sq F value    Pr(>F)  
## block                1   16.81   16.81  1.7281  0.209786  
## FO(x1, x2, x3, x4)   4 1510.00  377.50 38.8175 1.965e-07  
## TWI(x1, x2, x3, x4)  6 1114.00  185.67 19.0917 5.355e-06  
## PQ(x1, x2, x3, x4)   4  282.54   70.64  7.2634  0.002201  
## Residuals           14  136.15    9.72                   
## Lack of fit         10  125.40   12.54  4.6660  0.075500  
## Pure error           4   10.75    2.69                   
##  
## Stationary point of response surface:  
##         x1         x2         x3         x4  
##  0.8607107 -0.3307115 -0.8394866 -0.1161465  
##  
## Stationary point in original units:  
##         A         R         W         L  
## 12.916426  2.434015  1.040128  1.941927  
##  
## Eigenanalysis:  
## $values  
## [1]  3.258222 -1.198324 -3.807935 -4.651963  
##  
## $vectors  
##          [,1]       [,2]       [,3]        [,4]  
## x1  0.5177048 0.04099358  0.7608371 -0.38913772  
## x2 -0.4504231 0.58176202  0.5056034  0.45059647  
## x3 -0.4517232 0.37582195 -0.1219894 -0.79988915  
## x4  0.5701289 0.72015994 -0.3880860  0.07557783

绘制拟合值的等高线图

contour(

可视化后果

围绕拟合面,咱们能够画出样本拟合点的地位。默认状况下,每个小区显示多个轮廓线的图像。能够看到,图中显示的不肯定是等高线图的核心(默认可变范畴是从数据中取得); 而是它设置在在坐标轴上的变量对应的值。因而,左上角的图中绘制了在 x1 和 x2 对应的拟合值,其中 x3 =-0.839 和 x4=-0.116,在固定的值,最大的就是该坐标 X1 =0.861,X2=-0.331。


最受欢迎的见解

1.[](http://tecdat.cn/r%e8%af%ad%e…)R 语言多元 Logistic 逻辑回归 利用案例

2.[](http://tecdat.cn/r%e8%af%ad%e…)面板平滑转移回归 (PSTR) 剖析案例实现

3.[](http://tecdat.cn/r%e8%af%ad%e…)matlab 中的偏最小二乘回归(PLSR)和主成分回归(PCR)

4.[](http://tecdat.cn/r%e8%af%ad%e…)R 语言泊松 Poisson 回归模型剖析案例

5.[](http://tecdat.cn/r%e8%af%ad%e…)R 语言回归中的 Hosmer-Lemeshow 拟合优度测验

6.[](http://tecdat.cn/r%e8%af%ad%e…)r 语言中对 LASSO 回归,Ridge 岭回归和 Elastic Net 模型实现

7.[](http://tecdat.cn/r-%e8%af%ad%…)在 R 语言中实现 Logistic 逻辑回归

8.[](http://tecdat.cn/r%e8%af%ad%e…)python 用线性回归预测股票价格

9.[](http://tecdat.cn/r%e8%af%ad%e…)R 语言如何在生存剖析与 Cox 回归中计算 IDI,NRI 指标

正文完
 0