共计 14564 个字符,预计需要花费 37 分钟才能阅读完成。
摘要: 本文通过理论案例,阐明如何按日期来对订单数据进行程度分库和分表,实现数据的分布式查问和操作。
本文分享自华为云社区《数据库分库分表 Java 实战经验总结 丨【绽开吧!数据库】》,作者:jackwangcumt。
咱们晓得,以后的利用都离不开数据库,随着数据库中的数据越来越多,单表突破性能下限记录时,如 MySQL 单表上线预计在近千万条内,当记录数持续增长时,从性能思考,则须要进行拆分解决。而拆分分为横向拆分和纵向拆分。一般来说,采纳横向拆分较多,这样的表构造是统一的,只是不同的数据存储在不同的数据库表中。其中横向拆分也分为分库和分表。
1 示例数据库筹备
为了说分明如何用 Java 语言和相干框架实现业务表的分库和分表处理。这里首先用 MySQL 数据库中创立两个独立的数据库实例,名字为 mydb 和 mydb2,此可演示分库操作。另外在每个数据库实例中,创立 12 个业务表,按年月进行数据拆分。具体的创立表脚本如下:
CREATE TABLE `t_bill_2021_1` (`order_id` bigint(20) NOT NULL COMMENT '订单 id',
`user_id` int(20) NOT NULL COMMENT '用户 id',
`address_id` bigint(20) NOT NULL COMMENT '地址 id',
`status` char(1) DEFAULT NULL COMMENT '订单状态',
`create_time` datetime DEFAULT NULL COMMENT '创立工夫',
PRIMARY KEY (`order_id`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;
CREATE TABLE `t_bill_2021_2` (`order_id` bigint(20) NOT NULL COMMENT '订单 id',
`user_id` int(20) NOT NULL COMMENT '用户 id',
`address_id` bigint(20) NOT NULL COMMENT '地址 id',
`status` char(1) DEFAULT NULL COMMENT '订单状态',
`create_time` datetime DEFAULT NULL COMMENT '创立工夫',
PRIMARY KEY (`order_id`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;
-- 省略....
CREATE TABLE `t_bill_2021_12` (`order_id` bigint(20) NOT NULL COMMENT '订单 id',
`user_id` int(20) NOT NULL COMMENT '用户 id',
`address_id` bigint(20) NOT NULL COMMENT '地址 id',
`status` char(1) DEFAULT NULL COMMENT '订单状态',
`create_time` datetime DEFAULT NULL COMMENT '创立工夫',
PRIMARY KEY (`order_id`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;
胜利执行脚本后,在 MySQL 管理工具中能够看到如下的示例界面:
2 分库分表实现
在 Java 语言下的框架中,有泛滥的开源框架,其中对于分库分表的框架,能够抉择 Apache ShardingSphere,其官网介绍说:ShardingSphere 是一套开源的分布式数据库解决方案组成的生态圈,它由 JDBC、Proxy 和 Sidecar(布局中)这 3 款既可能独立部署,又反对混合部署配合应用的产品组成。它们均提供标准化的数据程度扩大、分布式事务和分布式治理等性能,可实用于如 Java 同构、异构语言、云原生等各种多样化的利用场景。Apache ShardingSphere 5.x 版本开始致力于可插拔架构。目前,数据分片、读写拆散、数据加密、影子库压测等性能,以及 MySQL、PostgreSQL、SQLServer、Oracle 等 SQL 与协定的反对,均通过插件的形式织入我的项目。官网地址为:https://shardingsphere.apache…。
上面的示例采纳 Spring Boot 框架来实现,相干的库通过 Maven 进行治理。首先给出 pom.xml 配置文件的定义:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.5.3</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<groupId>com.example</groupId>
<artifactId>wyd</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>wyd</name>
<description>Demo project for Spring Boot</description>
<properties>
<java.version>1.8</java.version>
<mybatis-plus.version>3.1.1</mybatis-plus.version>
<sharding-sphere.version>4.0.0-RC2</sharding-sphere.version>
<shardingsphere.version>5.0.0-beta</shardingsphere.version>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.mybatis.spring.boot</groupId>
<artifactId>mybatis-spring-boot-starter</artifactId>
<version>2.0.1</version>
</dependency>
<dependency>
<groupId>com.baomidou</groupId>
<artifactId>mybatis-plus-boot-starter</artifactId>
<version>${mybatis-plus.version}</version>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
<dependency>
<groupId>joda-time</groupId>
<artifactId>joda-time</artifactId>
<version>2.9.8</version>
</dependency>
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>sharding-jdbc-spring-boot-starter</artifactId>
<version>${sharding-sphere.version}</version>
</dependency>
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>sharding-jdbc-spring-namespace</artifactId>
<version>${sharding-sphere.version}</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>org.postgresql</groupId>
<artifactId>postgresql</artifactId>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>
</project>
其次,给出一个实体类,它对应于上述创立的数据库表 t_bill,其定义如下:
package com.example.wyd.dao;
import com.baomidou.mybatisplus.annotation.TableName;
import lombok.Data;
import java.util.Date;
@Data
@TableName("t_bill")
public class Bill {
private Long orderId;
private Integer userId;
private Long addressId;
private String status;
private Date createTime;
public void setOrderId(Long orderId) {this.orderId = orderId;}
public void setUserId(Integer userId) {this.userId = userId;}
public void setAddressId(Long addressId) {this.addressId = addressId;}
public void setStatus(String status) {this.status = status;}
public void setCreateTime(Date createTime) {this.createTime = createTime;}
}
映射类 BillMapper 定义如下:
package com.example.wyd.mapper;
import com.baomidou.mybatisplus.core.mapper.BaseMapper;
import com.example.wyd.dao.Bill;
public interface BillMapper extends BaseMapper<Bill> {}
服务类接口定义如下:
package com.example.wyd.service;
import com.baomidou.mybatisplus.extension.service.IService;
import com.example.wyd.dao.Bill;
public interface BillService extends IService<Bill> {}
服务类接口的实现类定义如下:
package com.example.wyd.service;
import com.baomidou.mybatisplus.extension.service.impl.ServiceImpl;
import com.example.wyd.dao.Bill;
import com.example.wyd.mapper.BillMapper;
import org.springframework.stereotype.Service;
@Service
public class BillServiceImpl extends ServiceImpl<BillMapper, Bill> implements BillService {}
这里咱们采纳了 MybatisPlus 框架,它能够很不便的进行数据库相干操作,而无需过多写 SQL 来实现具体业务逻辑。通过上述定义,通过继承接口的形式,并提供实体类的定义,MybatisPlus 框架会通过反射机制来依据数据库设置来生成 SQL 语句,其中蕴含增删改查接口,具体的实现咱们并未具体定义。
上面定义一个自定义的分库算法,具体实现如下:
package com.example.wyd;
import org.apache.shardingsphere.api.sharding.standard.PreciseShardingAlgorithm;
import org.apache.shardingsphere.api.sharding.standard.PreciseShardingValue;
import java.util.Collection;
// 自定义数据库分片算法
public class DBShardingAlgorithm implements PreciseShardingAlgorithm<Long> {
@Override
public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Long> shardingValue) {
// 实在数据库节点
availableTargetNames.stream().forEach((item) -> {System.out.println("actual db:" + item);
});
// 逻辑表以及分片的字段名
System.out.println("logicTable:"+shardingValue.getLogicTableName()+";shardingColumn:"+ shardingValue.getColumnName());
// 分片数据字段值
System.out.println("shardingColumn value:"+ shardingValue.getValue().toString());
// 获取字段值
long orderId = shardingValue.getValue();
// 分片索引计算 0 , 1
long db_index = orderId & (2 - 1);
for (String each : availableTargetNames) {if (each.equals("ds"+db_index)) {
// 匹配的话,返回数据库名
return each;
}
}
throw new IllegalArgumentException();}
}
上面给出数据的分表逻辑,这个定义稍显简单一点,就是依据业务数据的日期字段值,依据月份落入对应的物理数据表中。实现示例代码如下:
package com.example.wyd;
import org.apache.shardingsphere.api.sharding.standard.PreciseShardingAlgorithm;
import org.apache.shardingsphere.api.sharding.standard.PreciseShardingValue;
import java.util.Collection;
import java.util.Date;
// 表按日期自定义分片
public class TableShardingAlgorithm implements PreciseShardingAlgorithm<Date> {
@Override
public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> shardingValue) {
// 实在数据库节点
availableTargetNames.stream().forEach((item) -> {System.out.println("actual db:" + item);
});
// 逻辑表以及分片的字段名
System.out.println("logicTable:"+shardingValue.getLogicTableName()+";shardingColumn:"+ shardingValue.getColumnName());
// 分片数据字段值
System.out.println("shardingColumn value:"+ shardingValue.getValue().toString());
// 获取表名前缀
String tb_name = shardingValue.getLogicTableName() + "_";
// 依据日期分表
Date date = shardingValue.getValue();
String year = String.format("%tY", date);
String mon =String.valueOf(Integer.parseInt(String.format("%tm", date)));
//String dat = String.format("%td", date); // 也能够装置年月日来分表
// 抉择表
tb_name = tb_name + year + "_" + mon;
// 理论的表名
System.out.println("tb_name:" + tb_name);
for (String each : availableTargetNames) {//System.out.println("availableTableName:" + each);
if (each.equals(tb_name)) {
// 返回物理表名
return each;
}
}
throw new IllegalArgumentException();}
}
数据的分库分表能够在 Spring Boot 的属性配置文件中进行设 (application.properties):
server.port=8080
#########################################################################################################
# 配置 ds0 和 ds1 两个数据源
spring.shardingsphere.datasource.names = ds0,ds1
#ds0 配置
spring.shardingsphere.datasource.ds0.type = com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds0.driver-class-name = com.mysql.cj.jdbc.Driver
spring.shardingsphere.datasource.ds0.jdbc-url = jdbc:mysql://127.0.0.1:3306/mydb?characterEncoding=utf8
spring.shardingsphere.datasource.ds0.username = uname
spring.shardingsphere.datasource.ds0.password = pwd
#ds1 配置
spring.shardingsphere.datasource.ds1.type = com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds1.driver-class-name = com.mysql.cj.jdbc.Driver
spring.shardingsphere.datasource.ds1.jdbc-url = jdbc:mysql://127.0.0.1:3306/mydb2characterEncoding=utf8
spring.shardingsphere.datasource.ds1.username = uname
spring.shardingsphere.datasource.ds1.password = pwd
#########################################################################################################
# 默认的分库策略:id 取模
spring.shardingsphere.sharding.default-database-strategy.inline.sharding-column = id
spring.shardingsphere.sharding.default-database-strategy.inline.algorithm-expression = ds$->{id % 2}
#########################################################################################################
spring.shardingsphere.sharding.tables.t_bill.actual-data-nodes=ds$->{0..1}.t_bill_$->{2021..2021}_$->{1..12}
#数据库分片字段
spring.shardingsphere.sharding.tables.t_bill.database-strategy.standard.sharding-column=order_id
#自定义数据库分片策略
spring.shardingsphere.sharding.tables.t_bill.database-strategy.standard.precise-algorithm-class-name=com.example.wyd.DBShardingAlgorithm
#表分片字段
spring.shardingsphere.sharding.tables.t_bill.table-strategy.standard.sharding-column=create_time
#自定义表分片策略
spring.shardingsphere.sharding.tables.t_bill.table-strategy.standard.precise-algorithm-class-name=com.example.wyd.TableShardingAlgorithm
#########################################################################################################
# 应用 SNOWFLAKE 算法生成主键
spring.shardingsphere.sharding.tables.t_bill.key-generator.column = order_id
spring.shardingsphere.sharding.tables.t_bill.key-generator.type = SNOWFLAKE
spring.shardingsphere.sharding.tables.t_bill.key-generator.props.worker.id=123
#########################################################################################################
spring.shardingsphere.props.sql.show = true
最初,咱们给出一个定义的 Controller 类型,来测试分库分表的查问和保留操作是否正确。HomeController 类定义如下:
package com.example.wyd.controller;
import com.baomidou.mybatisplus.core.conditions.query.QueryWrapper;
import com.example.wyd.dao.Bill;
import com.example.wyd.service.BillService;
import org.joda.time.DateTime;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.List;
@RestController
@RequestMapping("/api")
public class HomeController {
@Autowired
private BillService billService;
//http://localhost:8080/api/query?start=2021-02-07%2000:00:00&end=2021-03-07%2000:00:00
@RequestMapping("/query")
public List<Bill> queryList(@RequestParam("start") String start, @RequestParam("end") String end) {SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
try {Date date = sdf.parse(start);
Date date2 = sdf.parse(end);
QueryWrapper<Bill> queryWrapper = new QueryWrapper<>();
queryWrapper.ge("create_time",date)
.and(qw-> qw.le("create_time", date2)).last("limit 1,10");
List<Bill> billIPage = billService.list(queryWrapper);
System.out.println(billIPage.size());
billIPage.forEach(System.out::println);
return billIPage;
} catch (ParseException e) {e.printStackTrace();
}
return null;
}
//http://localhost:8080/api/save?userid=999&addressId=999&status=M&date=2021-03-07%2000:00:00
@RequestMapping("/save")
public String Save(@RequestParam("userid") int userId, @RequestParam("addressId") long AddressId,
@RequestParam("status") String status
,@RequestParam("date") String strDate) {
String ret ="0";
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
try {Date date = sdf.parse(strDate);
Bill bill = new Bill();
bill.setUserId(userId);
bill.setAddressId(AddressId);
bill.setStatus(status);
bill.setCreateTime(date);
boolean isOk = billService.save(bill);
if (isOk){ret ="1";}
} catch (ParseException e) {e.printStackTrace();
}
return ret;
}
}
至此,咱们能够用测试类初始化一些数据,并做一些初步的数据操作测试:
package com.example.wyd;
import com.baomidou.mybatisplus.core.conditions.query.QueryWrapper;
import com.example.wyd.dao.Bill;
import com.example.wyd.dao.Order;
import com.example.wyd.service.BillService;
import com.example.wyd.service.OrderService;
import org.joda.time.DateTime;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.*;
public class OrderServiceImplTest extends WydApplicationTests {
@Autowired
private BillService billService;
@Test
public void testBillSave(){for (int i = 0 ; i< 120 ; i++){Bill bill = new Bill();
bill.setUserId(i);
bill.setAddressId((long)i);
bill.setStatus("K");
bill.setCreateTime((new Date(new DateTime(2021,(i % 11)+1,7,00, 00,00,000).getMillis())));
billService.save(bill);
}
}
@Test
public void testGetByOrderId(){
long id = 626038622575374337L; // 依据数据批改,无数据会报错
QueryWrapper<Bill> queryWrapper = new QueryWrapper<>();
queryWrapper.eq("order_id", id);
Bill bill = billService.getOne(queryWrapper);
System.out.println(bill.toString());
}
@Test
public void testGetByDate(){SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
try {Date date = sdf.parse("2021-02-07 00:00:00");
QueryWrapper<Bill> queryWrapper = new QueryWrapper<>();
queryWrapper.eq("create_time",date);
List<Bill> billIPage = billService.list(queryWrapper);
System.out.println(billIPage.size());
System.out.println(billIPage.toString());
} catch (ParseException e) {e.printStackTrace();
}
}
@Test
public void testGetByDate2(){SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
try {Date date = sdf.parse("2021-02-07 00:00:00");
Date date2 = sdf.parse("2021-03-07 00:00:00");
QueryWrapper<Bill> queryWrapper = new QueryWrapper<>();
queryWrapper.ge("create_time",date)
.and(qw-> qw.le("create_time", date2));
List<Bill> billIPage = billService.list(queryWrapper);
System.out.println(billIPage.size());
billIPage.forEach(System.out::println);
} catch (ParseException e) {e.printStackTrace();
}
}
}
执行上述测试,通过后会生成测试数据。
3 验证
关上浏览器,输出网址进行查问测试:http://localhost:8080/api/que…
输出如下网址进行数据新增测试:http://localhost:8080/api/sav…
通过跟踪剖析,此数据落入如下的表中,SQL 语句如下:
SELECT * FROM mydb2.t_bill_2021_3 LIMIT 0, 1000
这里还须要留神,ShardingSphere 还反对分布式事务 ,感兴趣的能够浏览官网相干材料进行学习。
点击关注,第一工夫理解华为云陈腐技术~