关于深度学习:使用PyTorch和Keras实现-pix2pix-GAN

39次阅读

共计 6975 个字符,预计需要花费 18 分钟才能阅读完成。

比照两个框架实现同一个模型到底有什么区别?

第一步,咱们对数据集进行图像预处理。咱们在这里抉择 Facades 数据集,咱们将 2 张图像合并为一张,以便在训练过程中进行一些加强。

Pytorch:

 def __getitem__(self, index):img = Image.open(self.files[index % len(self.files)])
         w, h = img.size
         img_A = img.crop((0, 0, w / 2, h))
         img_B = img.crop((w / 2, 0, w, h))if np.random.random() < 0.5:
             img_A = Image.fromarray(np.array(img_A)[:, ::-1, :], "RGB")
             img_B = Image.fromarray(np.array(img_B)[:, ::-1, :], "RGB")img_A = self.transform(img_A)
         img_B = self.transform(img_B)return {"A": img_A, "B": img_B}

Keras:

 def load_batch(self, batch_size=1, is_testing=False):
         data_type = "train" if not is_testing else "val"
         path = glob('./datasets/%s/%s/*' % (self.dataset_name, data_type))self.n_batches = int(len(path) / batch_size)for i in range(self.n_batches-1):
             batch = path[i*batch_size:(i+1)*batch_size]
             imgs_A, imgs_B = [], []
             for img in batch:
                 img = self.imread(img)
                 h, w, _ = img.shape
                 half_w = int(w/2)
                 img_A = img[:, :half_w, :]
                 img_B = img[:, half_w:, :]img_A = resize(img_A, self.img_res)
                 img_B = resize(img_B, self.img_res)if not is_testing and np.random.random() > 0.5:
                         img_A = np.fliplr(img_A)
                         img_B = np.fliplr(img_B)imgs_A.append(img_A)
                 imgs_B.append(img_B)imgs_A = np.array(imgs_A)/127.5 - 1.
             imgs_B = np.array(imgs_B)/127.5 - 1.yield imgs_A, imgs_B

模型

在论文中提到应用的模型是 U-Net,所以须要应用层间的跳跃连贯(恒等函数)。应用上采样和下采样卷积制作自编码器生成和判断模型。

Pytorch:

 class Generator(nn.Module):
     def __init__(self, in_channels=3, out_channels=3):
         super(Generator, self).__init__()
         self.down1 = DownSampleConv(in_channels, 64, batchnorm=False)
         self.down2 = DownSampleConv(64, 128)
         self.down3 = DownSampleConv(128, 256)
         self.down4 = DownSampleConv(256, 512, dropout_rate=0.5)
         self.down5 = DownSampleConv(512, 512, dropout_rate=0.5)
         self.down6 = DownSampleConv(512, 512, dropout_rate=0.5)
         self.down7 = DownSampleConv(512, 512, dropout_rate=0.5)
         self.down8 = DownSampleConv(512, 512, batchnorm=False, dropout_rate=0.5)self.up1 = UpSampleConv(512, 512, dropout_rate=0.5)
         self.up2 = UpSampleConv(1024, 512, dropout_rate=0.5)
         self.up3 = UpSampleConv(1024, 512, dropout_rate=0.5)
         self.up4 = UpSampleConv(1024, 512, dropout_rate=0.5)
         self.up5 = UpSampleConv(1024, 256)
         self.up6 = UpSampleConv(512, 128)
         self.up7 = UpSampleConv(256, 64)self.last_conv = nn.Sequential(nn.Upsample(scale_factor=2),
             nn.ZeroPad2d((1, 0, 1, 0)),
             nn.Conv2d(128, out_channels, 4, padding=1),
             nn.Tanh(),)def forward(self, x):
         ds1 = self.down1(x)
         ds2 = self.down2(ds1)
         ds3 = self.down3(ds2)
         ds4 = self.down4(ds3)
         ds5 = self.down5(ds4)
         ds6 = self.down6(ds5)
         ds7 = self.down7(ds6)
         ds8 = self.down8(ds7)
         us1 = self.up1(ds8, ds7)
         us2 = self.up2(us1, ds6)
         us3 = self.up3(us2, ds5)
         us4 = self.up4(us3, ds4)
         us5 = self.up5(us4, ds3)
         us6 = self.up6(us5, ds2)
         us7 = self.up7(us6, ds1)
         return self.last_conv(us7)class Discriminator(nn.Module):
     def __init__(self, in_channels=3):
         super(Discriminator, self).__init__()self.model = nn.Sequential(DownSampleConv(in_channels + in_channels, 64, batchnorm=False, inplace=True),
             DownSampleConv(64, 128, inplace=True),
             DownSampleConv(128, 256, inplace=True),
             DownSampleConv(256, 512, inplace=True),
             nn.ZeroPad2d((1, 0, 1, 0)),
             nn.Conv2d(512, 1, (4, 4), padding=1, bias=False)
         )def forward(self, x, y):
         img_input = torch.cat([x, y], 1)
         return self.model(img_input)

Keras

 def build_generator(self):
         initializers = RandomNormal(stddev=0.02)
         input_image = Input(shape=self.img_shape)
         e1 = self.encoder_block(input_image, 64, batchnorm=False)
         e2 = self.encoder_block(e1, 128)
         e3 = self.encoder_block(e2, 256)
         e4 = self.encoder_block(e3, 512)
         e5 = self.encoder_block(e4, 512)
         e6 = self.encoder_block(e5, 512)
         e7 = self.encoder_block(e6, 512)d2 = self.decoder_block(e7, e6, 512)
         d3 = self.decoder_block(d2, e5, 512)
         d4 = self.decoder_block(d3, e4, 512)
         d5 = self.decoder_block(d4, e3, 256)
         d6 = self.decoder_block(d5, e2, 128)
         d7 = self.decoder_block(d6, e1, 64)
         up = UpSampling2D(size=2)(d7)
         output_image = Conv2D(self.channels, (4, 4), strides=1, padding='same', kernel_initializer=initializers,
                               activation='tanh')(up)
         model = Model(input_image, output_image)
         return modeldef build_discriminator(self):
         initializers = RandomNormal(stddev=0.02)
         input_source_image = Input(self.img_shape)
         input_target_image = Input(self.img_shape)
         merged_input = Concatenate(axis=-1)([input_source_image, input_target_image])
         filters_list = [64, 128, 256, 512]def disc_layer(input_layer, filters, kernel_size=(4, 4), batchnorm=True):
             x = Conv2D(filters, kernel_size=kernel_size, strides=2, padding='same', kernel_initializer=initializers)(input_layer)
             x = LeakyReLU(0.2)(x)
             if batchnorm:
                 x = BatchNormalization()(x)
             return xx = disc_layer(merged_input, filters_list[0], batchnorm=False)
         x = disc_layer(x, filters_list[1])
         x = disc_layer(x, filters_list[2])
         x = disc_layer(x, filters_list[3])discriminator_output = Conv2D(1, kernel_size=(4, 4), padding='same', kernel_initializer=initializers)(x)
         model = Model([input_source_image, input_target_image], discriminator_output)
         return model

训练过程

对于训练,咱们持续应用生成器和鉴别器架构。应用论文中倡议的权重初始化办法更改权重初始化器(权重从均值为 0 的高斯分布初始化,标准差 0.02)。此外还有一些训练的超参数。(Adam 优化器,LR=0.0002, B1=0.5, B2=0.999)

Pytorch:

 #  Training
     prev_time = time.time()
     for epoch in range(init_epoch, n_epochs):
         for i, batch in enumerate(dataloader):real_A = Variable(batch["B"].type(Tensor))
             real_B = Variable(batch["A"].type(Tensor))valid = Variable(Tensor(np.ones((real_A.size(0), *patch))), requires_grad=False)
             fake = Variable(Tensor(np.zeros((real_A.size(0), *patch))), requires_grad=False)#  Train Generators
             optimizer_G.zero_grad()# GAN loss
             fake_B = generator(real_A)
             pred_fake = discriminator(fake_B, real_A)
             loss_GAN = criterion_GAN(pred_fake, valid)
             loss_pixel = criterion_pixelwise(fake_B, real_B)
             loss_G = loss_GAN + lambda_pixel * loss_pixel
             loss_G.backward()
             optimizer_G.step()#  Train Discriminator
             optimizer_D.zero_grad()
             pred_real = discriminator(real_B, real_A)
             loss_real = criterion_GAN(pred_real, valid)
             pred_fake = discriminator(fake_B.detach(), real_A)
             loss_fake = criterion_GAN(pred_fake, fake)
             loss_D = (loss_real + loss_fake) * 0.5
             loss_D.backward()
             optimizer_D.step()batches_done = epoch * len(dataloader) + i
             batches_left = n_epochs * len(dataloader) - batches_done
             time_left = datetime.timedelta(seconds=batches_left * (time.time() - prev_time))
             prev_time = time.time()# Print log
             sys.stdout.write("\r[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f, pixel: %f, adv: %f] ETA: %s"
                 % (epoch, n_epochs, i, len(dataloader), loss_D.item(), loss_G.item(), loss_pixel.item(),
                    loss_GAN.item(), time_left)
             )
             G_losses.append(loss_G.item())
             D_losses.append(loss_D.item())

Keras:

 def train(self, epochs, batch_size=1, sample_interval=50):
         valid = np.ones((batch_size,) + self.disc_patch)
         fake = np.zeros((batch_size,) + self.disc_patch)for epoch in range(epochs):
             for batch_i, (imgs_A, imgs_B) in enumerate(self.data_loader.load_batch(batch_size)):fake_A = self.generator.predict(imgs_B)d_loss_real = self.discriminator.train_on_batch([imgs_A, imgs_B], valid)
                 d_loss_fake = self.discriminator.train_on_batch([fake_A, imgs_B], fake)
                 d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)g_loss = self.combined.train_on_batch([imgs_A, imgs_B], [valid, imgs_A])print("[Epoch %d/%d] [Batch %d/%d] [D loss: %f,D Loss Real: %f, D Loss Fake: %f, acc: %3d%%] [G loss: %f, L1 Loss: %f, acc: %3d%%]" % (
                     epoch, epochs,
                     batch_i, self.data_loader.n_batches,
                     d_loss[0], d_loss_real[0], d_loss_fake[0], 100 * d_loss[1],
                     g_loss[0], g_loss[1], 100 * g_loss[2]))
                 self.G_losses.append(g_loss[0])
                 self.D_losses.append(d_loss[0])
                 if batch_i % sample_interval == 0:
                     self.sample_images(epoch, batch_i)
                     self.plot_metrics(self.G_losses, self.D_losses)

这样咱们就实现了一个残缺的流程,能够看到,除了训练这块其余步骤两个框架的差异根本不大。如果你对残缺代码感兴趣,本文代码如下:

https://avoid.overfit.cn/post/be317cf0a41c4a48b8a80398489120b3

作者:vargha khallokhi

正文完
 0