共计 4914 个字符,预计需要花费 13 分钟才能阅读完成。
模型微调是指在一个曾经训练好的模型的根底上,针对特定工作或者特定数据集进行再次训练以进步性能的过程。微调能够在使其适应特定工作时产生显着的后果。
RoBERTa(Robustly optimized BERT approach)是由 Facebook AI 提出的一种基于 Transformer 架构的预训练语言模型。它是对 Google 提出的 BERT(Bidirectional Encoder Representations from Transformers)模型的改良和优化。
“Low-Rank Adaptation”(低秩自适应)是一种用于模型微调或迁徙学习的技术。一般来说咱们只是应用 LORA 来微调大语言模型,然而其实只有是应用了 Transformers 块的模型,LORA 都能够进行微调,本文将介绍如何利用🤗PEFT 库,应用 LORA 进步微调过程的效率。
LORA 能够大大减少了可训练参数的数量,节俭了训练工夫、存储和计算成本,并且能够与其余模型自适应技术 (如前缀调优) 一起应用,以进一步加强模型。
然而,LORA 会引入额定的超参数调优层(特定于 LORA 的秩、alpha 等)。并且在某些状况下,性能不如齐全微调的模型最优,这个须要依据不同的需要来进行测试。
首先咱们装置须要的包:
!pip install transformers datasets evaluate accelerate peft
数据预处理
import torch
from transformers import RobertaModel, RobertaTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer, DataCollatorWithPadding
from peft import LoraConfig, get_peft_model
from datasets import load_dataset
peft_model_name = 'roberta-base-peft'
modified_base = 'roberta-base-modified'
base_model = 'roberta-base'
dataset = load_dataset('ag_news')
tokenizer = RobertaTokenizer.from_pretrained(base_model)
def preprocess(examples):
tokenized = tokenizer(examples['text'], truncation=True, padding=True)
return tokenized
tokenized_dataset = dataset.map(preprocess, batched=True, remove_columns=["text"])
train_dataset=tokenized_dataset['train']
eval_dataset=tokenized_dataset['test'].shard(num_shards=2, index=0)
test_dataset=tokenized_dataset['test'].shard(num_shards=2, index=1)
# Extract the number of classess and their names
num_labels = dataset['train'].features['label'].num_classes
class_names = dataset["train"].features["label"].names
print(f"number of labels: {num_labels}")
print(f"the labels: {class_names}")
# Create an id2label mapping
# We will need this for our classifier.
id2label = {i: label for i, label in enumerate(class_names)}
data_collator = DataCollatorWithPadding(tokenizer=tokenizer, return_tensors="pt")
训练
咱们训练两个模型,一个应用 LORA,另一个应用残缺的微调流程。这里能够看到 LORA 的训练工夫和训练参数的数量能缩小多少
以下是应用残缺微调
training_args = TrainingArguments(
output_dir='./results',
evaluation_strategy='steps',
learning_rate=5e-5,
num_train_epochs=1,
per_device_train_batch_size=16,
)
而后进行训练:
def get_trainer(model):
return Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=data_collator,
)
full_finetuning_trainer = get_trainer(AutoModelForSequenceClassification.from_pretrained(base_model, id2label=id2label),
)
full_finetuning_trainer.train()
上面看看 PEFT 的 LORA
model = AutoModelForSequenceClassification.from_pretrained(base_model, id2label=id2label)
peft_config = LoraConfig(task_type="SEQ_CLS", inference_mode=False, r=8, lora_alpha=16, lora_dropout=0.1)
peft_model = get_peft_model(model, peft_config)
print('PEFT Model')
peft_model.print_trainable_parameters()
peft_lora_finetuning_trainer = get_trainer(peft_model)
peft_lora_finetuning_trainer.train()
peft_lora_finetuning_trainer.evaluate()
能够看到
模型参数总计:125,537,288,而 LORA 模型的训练参数为:888,580,咱们只须要用 LORA 训练~0.70% 的参数! 这会大大减少内存的占用和训练工夫。
在训练实现后,咱们保留模型:
tokenizer.save_pretrained(modified_base)
peft_model.save_pretrained(peft_model_name)
最初测试咱们的模型
from peft import AutoPeftModelForSequenceClassification
from transformers import AutoTokenizer
# LOAD the Saved PEFT model
inference_model = AutoPeftModelForSequenceClassification.from_pretrained(peft_model_name, id2label=id2label)
tokenizer = AutoTokenizer.from_pretrained(modified_base)
def classify(text):
inputs = tokenizer(text, truncation=True, padding=True, return_tensors="pt")
output = inference_model(**inputs)
prediction = output.logits.argmax(dim=-1).item()
print(f'\n Class: {prediction}, Label: {id2label[prediction]}, Text: {text}')
# return id2label[prediction]
classify("Kederis proclaims innocence Olympic champion Kostas Kederis today left hospital ahead of his date with IOC inquisitors claiming his ...")
classify("Wall St. Bears Claw Back Into the Black (Reuters) Reuters - Short-sellers, Wall Street's dwindling\band of ultra-cynics, are seeing green again.")
模型评估
咱们还须要对 PEFT 模型的性能与齐全微调的模型的性能进行比照,看看这种形式有没有性能的损失
from torch.utils.data import DataLoader
import evaluate
from tqdm import tqdm
metric = evaluate.load('accuracy')
def evaluate_model(inference_model, dataset):
eval_dataloader = DataLoader(dataset.rename_column("label", "labels"), batch_size=8, collate_fn=data_collator)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
inference_model.to(device)
inference_model.eval()
for step, batch in enumerate(tqdm(eval_dataloader)):
batch.to(device)
with torch.no_grad():
outputs = inference_model(**batch)
predictions = outputs.logits.argmax(dim=-1)
predictions, references = predictions, batch["labels"]
metric.add_batch(
predictions=predictions,
references=references,
)
eval_metric = metric.compute()
print(eval_metric)
首先是没有进行微调的模型,也就是原始模型
evaluate_model(AutoModelForSequenceClassification.from_pretrained(base_model, id2label=id2label), test_dataset)
accuracy: 0.24868421052631579‘
上面是 LORA 微调模型
evaluate_model(inference_model, test_dataset)
accuracy: 0.9278947368421052
最初是齐全微调的模型:
evaluate_model(full_finetuning_trainer.model, test_dataset)
accuracy: 0.9460526315789474
总结
咱们应用 PEFT 对 RoBERTa 模型进行了微调和评估,能够看到应用 LORA 进行微调能够大大减少训练的参数和工夫,然而在准确性方面还是要比残缺的微调要稍稍降落。
本文代码:
https://avoid.overfit.cn/post/26e401b70f9840dab185a6a83aac06b0
作者:Achilles Moraites