共计 8608 个字符,预计需要花费 22 分钟才能阅读完成。
文章起源 | 恒源云社区
原文地址 | BPE 算法详解
原文作者 | Mathor
Byte Pair Encoding
在 NLP 模型中,输出通常是一个句子,例如 "I went to New York last week."
,一句话中蕴含很多单词(token)。传统的做法是将这些单词以空格进行分隔,例如['i', 'went', 'to', 'New', 'York', 'last', 'week']
。然而这种做法存在很多问题,例如模型无奈通过old, older, oldest
之间的关系学到 smart, smarter, smartest
之间的关系。如果咱们能应用将一个 token 分成多个 subtokens,下面的问题就能很好的解决。本文将详述目前比拟罕用的 subtokens 算法——BPE(Byte-Pair Encoding)
当初性能比拟好一些的 NLP 模型,例如 GPT、BERT、RoBERTa 等,在数据预处理的时候都会有 WordPiece 的过程,其次要的实现形式就是 BPE(Byte-Pair Encoding)。具体来说,例如 ['loved', 'loving', 'loves']
这三个单词。其实自身的语义都是 ” 爱 ” 的意思,然而如果咱们以词为单位,那它们就算不一样的词,在英语中不同后缀的词十分的多,就会使得词表变的很大,训练速度变慢,训练的成果也不是太好。BPE 算法通过训练,可能把下面的 3 个单词拆分成 ["lov","ed","ing","es"]
几局部,这样能够把词的自身的意思和时态离开,无效的缩小了词表的数量。算法流程如下:
- 设定最大 subwords 个数 $V$
- 将所有单词拆分为单个字符,并在最初增加一个进行符
</w>
,同时标记出该单词呈现的次数。例如,"low"
这个单词呈现了 5 次,那么它将会被解决为{'l o w </w>': 5}
- 统计每一个间断字节对的呈现频率,抉择最高频者合并成新的 subword
- 反复第 3 步直到达到第 1 步设定的 subwords 词表大小或下一个最高频的字节对呈现频率为 1
例如
{'l o w </w>': 5, 'l o w e r </w>': 2, 'n e w e s t </w>': 6, 'w i d e s t </w>': 3}
呈现最频繁的字节对是 e
和s
,共呈现了 6 +3= 9 次,因而将它们合并
{'l o w </w>': 5, 'l o w e r </w>': 2, 'n e w es t </w>': 6, 'w i d es t </w>': 3}
呈现最频繁的字节对是 es
和t
,共呈现了 6 +3= 9 次,因而将它们合并
{'l o w </w>': 5, 'l o w e r </w>': 2, 'n e w est </w>': 6, 'w i d est </w>': 3}
呈现最频繁的字节对是 est
和</w>
,共呈现了 6 +3= 9 次,因而将它们合并
{'l o w </w>': 5, 'l o w e r </w>': 2, 'n e w est</w>': 6, 'w i d est</w>': 3}
呈现最频繁的字节对是 l
和o
,共呈现了 5 +2= 7 次,因而将它们合并
{'lo w </w>': 5, 'lo w e r </w>': 2, 'n e w est</w>': 6, 'w i d est</w>': 3}
呈现最频繁的字节对是 lo
和w
,共呈现了 5 +2= 7 次,因而将它们合并
{'low </w>': 5, 'low e r </w>': 2, 'n e w est</w>': 6, 'w i d est</w>': 3}
…持续迭代直到达到预设的 subwords 词表大小或下一个最高频的字节对呈现频率为 1。这样咱们就失去了更加适合的词表,这个词表可能会呈现一些不是单词的组合,然而其自身有意义的一种模式
进行符 </w>
的意义在于示意 subword 是词后缀。举例来说:st
不加 </w>
能够呈现在词首,如 st ar
;加了</w>
表明改字词位于词尾,如wide st</w>
,二者意义截然不同
BPE 实现
import re, collections
def get_vocab(filename):
vocab = collections.defaultdict(int)
with open(filename, 'r', encoding='utf-8') as fhand:
for line in fhand:
words = line.strip().split()
for word in words:
vocab[''.join(list(word)) +' </w>'] += 1
return vocab
def get_stats(vocab):
pairs = collections.defaultdict(int)
for word, freq in vocab.items():
symbols = word.split()
for i in range(len(symbols)-1):
pairs[symbols[i],symbols[i+1]] += freq
return pairs
def merge_vocab(pair, v_in):
v_out = {}
bigram = re.escape(' '.join(pair))
p = re.compile(r'(?<!\S)' + bigram + r'(?!\S)')
for word in v_in:
w_out = p.sub(''.join(pair), word)
v_out[w_out] = v_in[word]
return v_out
def get_tokens(vocab):
tokens = collections.defaultdict(int)
for word, freq in vocab.items():
word_tokens = word.split()
for token in word_tokens:
tokens[token] += freq
return tokens
vocab = {'l o w </w>': 5, 'l o w e r </w>': 2, 'n e w e s t </w>': 6, 'w i d e s t </w>': 3}
# Get free book from Gutenberg
# wget http://www.gutenberg.org/cache/epub/16457/pg16457.txt
# vocab = get_vocab('pg16457.txt')
print('==========')
print('Tokens Before BPE')
tokens = get_tokens(vocab)
print('Tokens: {}'.format(tokens))
print('Number of tokens: {}'.format(len(tokens)))
print('==========')
num_merges = 5
for i in range(num_merges):
pairs = get_stats(vocab)
if not pairs:
break
best = max(pairs, key=pairs.get)
vocab = merge_vocab(best, vocab)
print('Iter: {}'.format(i))
print('Best pair: {}'.format(best))
tokens = get_tokens(vocab)
print('Tokens: {}'.format(tokens))
print('Number of tokens: {}'.format(len(tokens)))
print('==========')
输入如下
==========
Tokens Before BPE
Tokens: defaultdict(<class 'int'>, {'l': 7, 'o': 7, 'w': 16, '</w>': 16, 'e': 17, 'r': 2, 'n': 6, 's': 9, 't': 9, 'i': 3, 'd': 3})
Number of tokens: 11
==========
Iter: 0
Best pair: ('e', 's')
Tokens: defaultdict(<class 'int'>, {'l': 7, 'o': 7, 'w': 16, '</w>': 16, 'e': 8, 'r': 2, 'n': 6, 'es': 9, 't': 9, 'i': 3, 'd': 3})
Number of tokens: 11
==========
Iter: 1
Best pair: ('es', 't')
Tokens: defaultdict(<class 'int'>, {'l': 7, 'o': 7, 'w': 16, '</w>': 16, 'e': 8, 'r': 2, 'n': 6, 'est': 9, 'i': 3, 'd': 3})
Number of tokens: 10
==========
Iter: 2
Best pair: ('est', '</w>')
Tokens: defaultdict(<class 'int'>, {'l': 7, 'o': 7, 'w': 16, '</w>': 7, 'e': 8, 'r': 2, 'n': 6, 'est</w>': 9, 'i': 3, 'd': 3})
Number of tokens: 10
==========
Iter: 3
Best pair: ('l', 'o')
Tokens: defaultdict(<class 'int'>, {'lo': 7, 'w': 16, '</w>': 7, 'e': 8, 'r': 2, 'n': 6, 'est</w>': 9, 'i': 3, 'd': 3})
Number of tokens: 9
==========
Iter: 4
Best pair: ('lo', 'w')
Tokens: defaultdict(<class 'int'>, {'low': 7, '</w>': 7, 'e': 8, 'r': 2, 'n': 6, 'w': 9, 'est</w>': 9, 'i': 3, 'd': 3})
Number of tokens: 9
==========
编码和解码
编码
在之前的算法中,咱们曾经失去了 subword 的词表,对该词表依照字符个数由多到少排序。编码时,对于每个单词,遍历排好序的子词词表寻找是否有 token 是以后单词的子字符串,如果有,则该 token 是示意单词的 tokens 之一
咱们从最长的 token 迭代到最短的 token,尝试将每个单词中的子字符串替换为 token。最终,咱们将迭代所有 tokens,并将所有子字符串替换为 tokens。如果依然有子字符串没被替换但所有 token 都已迭代结束,则将残余的子词替换为非凡 token,如<unk>
例如
# 给定单词序列
["the</w>", "highest</w>", "mountain</w>"]
# 排好序的 subword 表
# 长度 6 5 4 4 4 4 2
["errrr</w>", "tain</w>", "moun", "est</w>", "high", "the</w>", "a</w>"]
# 迭代后果
"the</w>" -> ["the</w>"]
"highest</w>" -> ["high", "est</w>"]
"mountain</w>" -> ["moun", "tain</w>"]
解码
将所有的 tokens 拼在一起即可,例如
# 编码序列
["the</w>", "high", "est</w>", "moun", "tain</w>"]
# 解码序列
"the</w> highest</w> mountain</w>"
编码和解码实现
import re, collections
def get_vocab(filename):
vocab = collections.defaultdict(int)
with open(filename, 'r', encoding='utf-8') as fhand:
for line in fhand:
words = line.strip().split()
for word in words:
vocab[''.join(list(word)) +' </w>'] += 1
return vocab
def get_stats(vocab):
pairs = collections.defaultdict(int)
for word, freq in vocab.items():
symbols = word.split()
for i in range(len(symbols)-1):
pairs[symbols[i],symbols[i+1]] += freq
return pairs
def merge_vocab(pair, v_in):
v_out = {}
bigram = re.escape(' '.join(pair))
p = re.compile(r'(?<!\S)' + bigram + r'(?!\S)')
for word in v_in:
w_out = p.sub(''.join(pair), word)
v_out[w_out] = v_in[word]
return v_out
def get_tokens_from_vocab(vocab):
tokens_frequencies = collections.defaultdict(int)
vocab_tokenization = {}
for word, freq in vocab.items():
word_tokens = word.split()
for token in word_tokens:
tokens_frequencies[token] += freq
vocab_tokenization[''.join(word_tokens)] = word_tokens
return tokens_frequencies, vocab_tokenization
def measure_token_length(token):
if token[-4:] == '</w>':
return len(token[:-4]) + 1
else:
return len(token)
def tokenize_word(string, sorted_tokens, unknown_token='</u>'):
if string == '':
return []
if sorted_tokens == []:
return [unknown_token]
string_tokens = []
for i in range(len(sorted_tokens)):
token = sorted_tokens[i]
token_reg = re.escape(token.replace('.', '[.]'))
matched_positions = [(m.start(0), m.end(0)) for m in re.finditer(token_reg, string)]
if len(matched_positions) == 0:
continue
substring_end_positions = [matched_position[0] for matched_position in matched_positions]
substring_start_position = 0
for substring_end_position in substring_end_positions:
substring = string[substring_start_position:substring_end_position]
string_tokens += tokenize_word(string=substring, sorted_tokens=sorted_tokens[i+1:], unknown_token=unknown_token)
string_tokens += [token]
substring_start_position = substring_end_position + len(token)
remaining_substring = string[substring_start_position:]
string_tokens += tokenize_word(string=remaining_substring, sorted_tokens=sorted_tokens[i+1:], unknown_token=unknown_token)
break
return string_tokens
# vocab = {'l o w </w>': 5, 'l o w e r </w>': 2, 'n e w e s t </w>': 6, 'w i d e s t </w>': 3}
vocab = get_vocab('pg16457.txt')
print('==========')
print('Tokens Before BPE')
tokens_frequencies, vocab_tokenization = get_tokens_from_vocab(vocab)
print('All tokens: {}'.format(tokens_frequencies.keys()))
print('Number of tokens: {}'.format(len(tokens_frequencies.keys())))
print('==========')
num_merges = 10000
for i in range(num_merges):
pairs = get_stats(vocab)
if not pairs:
break
best = max(pairs, key=pairs.get)
vocab = merge_vocab(best, vocab)
print('Iter: {}'.format(i))
print('Best pair: {}'.format(best))
tokens_frequencies, vocab_tokenization = get_tokens_from_vocab(vocab)
print('All tokens: {}'.format(tokens_frequencies.keys()))
print('Number of tokens: {}'.format(len(tokens_frequencies.keys())))
print('==========')
# Let's check how tokenization will be for a known word
word_given_known = 'mountains</w>'
word_given_unknown = 'Ilikeeatingapples!</w>'
sorted_tokens_tuple = sorted(tokens_frequencies.items(), key=lambda item: (measure_token_length(item[0]), item[1]), reverse=True)
sorted_tokens = [token for (token, freq) in sorted_tokens_tuple]
print(sorted_tokens)
word_given = word_given_known
print('Tokenizing word: {}...'.format(word_given))
if word_given in vocab_tokenization:
print('Tokenization of the known word:')
print(vocab_tokenization[word_given])
print('Tokenization treating the known word as unknown:')
print(tokenize_word(string=word_given, sorted_tokens=sorted_tokens, unknown_token='</u>'))
else:
print('Tokenizating of the unknown word:')
print(tokenize_word(string=word_given, sorted_tokens=sorted_tokens, unknown_token='</u>'))
word_given = word_given_unknown
print('Tokenizing word: {}...'.format(word_given))
if word_given in vocab_tokenization:
print('Tokenization of the known word:')
print(vocab_tokenization[word_given])
print('Tokenization treating the known word as unknown:')
print(tokenize_word(string=word_given, sorted_tokens=sorted_tokens, unknown_token='</u>'))
else:
print('Tokenizating of the unknown word:')
print(tokenize_word(string=word_given, sorted_tokens=sorted_tokens, unknown_token='</u>'))
输入如下
Tokenizing word: mountains</w>...
Tokenization of the known word:
['mountains</w>']
Tokenization treating the known word as unknown:
['mountains</w>']
Tokenizing word: Ilikeeatingapples!</w>...
Tokenizating of the unknown word:
['I', 'like', 'ea', 'ting', 'app', 'l', 'es!</w>']