近期,Meta AI团队在生产PyTorch AI模型时遇到了一个难题。这一问题由CUDA非法内存拜访引起,号称集结了Meta全公司最牛的AI工程师才搞定,这篇博客记录了他们应用CUDA的core dump来确定报错地位所应用的技巧和实际。
作者|Zachary DeVito
翻译|贾川、程浩源
如果GPU读取了有效内存,那么CUDA API将会开始从产生谬误的中央开始,后续所有API调用都会返回cudaErrorIllegalAddress:
设施在有效内存地址上应用了加载或存储指令。这使得过程处于不统一的状态,任何后续的CUDA工作都将返回雷同的谬误。若要持续应用CUDA,过程必须终止并重新启动。
因为CUDA kernel是从CPU异步启动,所以在启动异样kernel的中央不会报告此谬误,而是在GPU上理论产生异样并流传到CPU之后的任何CUDA API调用时报告此谬误。
当然,要是应用CUDA_LAUNCH_BLOCKING=1环境变量,CUDA就会在kernel启动后运行实现才返回,但这会使得程序运行显著变慢,可能会扭转报错机会,以至某些不确定性问题不再被触发。
此外,如果有多个线程应用CUDA API,cudaErrorIllegalAddress可能首先在另一个线程上报错,而不是在启动线程上报错。因而,即便在CUDA_LAUNCH_BLOCKING=1的状况下,我也不信赖堆栈跟踪出现的信息。
相同,对于“非法地址(illegal address)”这一bug,咱们心愿能找到更多、更精确的报错起因。相似于其余处理器,当故障产生时,GPU上的SM会记录无关故障指令的信息。
可怜的是,我意识到没有过程内的办法能够获取这类信息。咱们只能在运行之前,通过将cuda-gdb或cuda-memcheck附加到过程中来拜访此类信息。但这对于那些发生率很低的bug来说,在这种模式下从新运行这个过程来重现bug是不切实际的。
侥幸的是,通过设置环境变量CUDA_ENABLE_COREDUMP_ON_EXCEPTION=1,咱们能够使CUDA在产生异样后生成core dumps来出现GPU的状态,而后用cuda-gdb来查看该文件。
本文探讨了如何从这些core dumps中生成提取信息,以便在没有调试信息的状况下,也能复原诸多信息,比方参数值和出错指令等。
1
生成core dumps
在有故障的过程上设置 CUDA_ENABLE_COREDUMP_ON_EXCEPTION=1。如此一来,当故障产生时,它会生成一个core dumps文件cudacoredump.hostname.pid。
2
应用cuda-gdb关上core dumps
$ /usr/local/cuda/bin/cuda-gdb
(cuda-gdb) target cudacore /tmp/cudacoredump.hostname.pid
Opening GPU coredump: /tmp/cudacoredump.hostname.pid
这应该报告一些对于故障产生地点的信息:
CUDA Exception: Warp Illegal Address
The exception was triggered at PC 0x7ff8b63ce440
[Current focus set to CUDA kernel 0, grid 132575338, block (1240,0,0), thread (0,1,0), device 0, sm 1, warp 62, lane 0]
#0 0x00007ff8b63ce570 in void (anonymous namespace)::softmax_warp_forward<c10::Half, c10::Half, float, 8, false, true>(c10::Half*, c10::Half const*, int, int, int, bool const*, int, bool)<<<(1824,1,1),(32,4,1)>>> ()
相干信息如下:
- 触发Warp Illegal Address的指令地址:The exception was triggered at PC 0x7ff8b63ce440
- 正在运行的kernel名称:softmax_warp_forward
- 执行进行的地址:0x00007ff8b63ce570
请留神,GPU的进行地址(…570)是在触发地址(…440)之后。因为内存是异步读取,所以GPU会继续执行指令,之后能力发现故障。在查看寄存器的值时要留神这一点,因为你从中看到的是执行进行时的状态,而谬误产生时指令中所应用寄存器的值可能也曾经被笼罩。
最初,除非编译生成的代码中蕴含调试信息,否则将看不到代码行或文件名信息。但通过后续介绍的办法,即便没有如上内容,你也能从转储中复原大量信息。
3
反汇编kernel
应用disas查看kernel的shader assembly(SASS)列表:
(cuda-gdb) disas
...
0x00007ff8b63ce420 <+1056>: IADD3 R8, R6.reuse, 0xc0, RZ
0x00007ff8b63ce430 <+1072>: IADD3 R18, R6, 0xe0, RZ
0x00007ff8b63ce440 <+1088>: LDG.E.U8.SYS R19, [R2+0xe0]
0x00007ff8b63ce450 <+1104>: ISETP.GE.AND P3, PT, R8, R13, PT
...
要查看谬误指令,请找到与之匹配的PC:
0x00007ff8b63ce440 <+1088>: LDG.E.U8.SYS R19, [R2+0xe0]
在这种状况下,LDG是“从全局内存加载”,从地址[R2+0xe0]读取1字节(“U8”)到寄存器R19。出错的起因大略是R2+0xe0越界(out of bounds)了。
4
查看寄存器
应用info reg查看所有GPU寄存器的值:
(cuda-gdb) info reg
R0 0xb8198 754072
R1 0xfffc80 16776320
R2 0xff800000 -8388608
R3 0xff800000 -8388608
R4 0xff800000 -8388608
R5 0x7ff8 32760
R6 0x0 0
R7 0x2 2
R8 0x407ce000 1081925632
...
尽管这里能看到R2的值,但其实R2在PC…440和…570之间的值曾经被笼罩了,因而咱们很难找到故障地址的值。
5
读取GPU内存
应用print从内存中读取值:
# read a void* from CUDA's global memory:
(cuda-gdb) print *(void * @global *)0x7ff841000000
# read an int from CUDA's global memory
(cuda-gdb) print *(int @global *)0x7ff841000000
6
复原传递给kernel的参数
kernel的参数在常量“参数”内存中传递。加载它们的指令包含对常量内存的援用,如c0x0:
0x00007ff8b63ce080 <+128>: IMAD R0, R3.reuse, c[0x0][0x174], R6
能够应用以下办法读取此内存:
(cuda-gdb) print *(int @parameter *)0x174
152
要真正获取所有kernel参数的值,咱们须要理解它们在内存中的排列形式。假如kernel有参数:
_global__ void softmax_warp_forward(
output_t *dst,
const input_t *src,
int batch_size, int stride,
int element_count,
const bool *mask = nullptr,
const int head_chunk_size = -1, bool is_transformer_mask = false) {
...
常量内存中参数的布局与将它们放入struct中的布局雷同:
struct Args { // offset
output_t *dst; // 0
const input_t *src; // 8
int batch_size; // 16
int stride; // 20
int element_count; // 24
// <4 bytes padding>
const bool *mask; // 32
const int head_chunk_size; // 40
bool is_transformer_mask; // 44
};
这意味着构造体的值通常与其本身大小的下一个倍数对齐(8字节类型与8字节倍数对齐),必要时插入一些填充字节(padding bytes)。
kernel参数的结尾不是0x0(低位的地址蕴含一些对于kernel的额定元数据),你可能须要查看程序集中对c0x0的所有援用,依据值的应用形式,查看参数缓冲区可能从何处开始。我本人运行时,参数看起来从0x160开始,这是cuda-gdb能对常量内存返回一个正当的值的条件下,对该常量内存的最小援用。
晓得了布局和起始地址后,就能够用print来获取值(在print中指定正确的类型):
# stride
(cuda-gdb) print *(int @parameter *) (0x160 + 20)
152
SASS文档(https://docs.nvidia.com/cuda/…)有更多对于正在运行的汇编语言的文档,但目前还不甚欠缺,且会随着GPU的更新换代而有所扭转。
(本文经受权后编译公布。原文:
https://github.com/zdevito/zd…)
欢送下载体验 OneFlow v0.8.0 最新版本:https://github.com/Oneflow-In…
发表回复