共计 11967 个字符,预计需要花费 30 分钟才能阅读完成。
目前风行的强化学习算法包含 Q-learning、SARSA、DDPG、A2C、PPO、DQN 和 TRPO。这些算法已被用于在游戏、机器人和决策制定等各种利用中,并且这些风行的算法还在一直倒退和改良,本文咱们将对其做一个简略的介绍。
1、Q-learning
Q-learning:Q-learning 是一种无模型、非策略的强化学习算法。它应用 Bellman 方程预计最佳动作值函数,该方程迭代地更新给定状态动作对的估计值。Q-learning 以其简略性和解决大型间断状态空间的能力而闻名。
上面是一个应用 Python 实现 Q-learning 的简略示例:
importnumpyasnp | |
# Define the Q-table and the learning rate | |
Q=np.zeros((state_space_size, action_space_size)) | |
alpha=0.1 | |
# Define the exploration rate and discount factor | |
epsilon=0.1 | |
gamma=0.99 | |
forepisodeinrange(num_episodes): | |
current_state=initial_state | |
whilenotdone: | |
# Choose an action using an epsilon-greedy policy | |
ifnp.random.uniform(0, 1) <epsilon: | |
action=np.random.randint(0, action_space_size) | |
else: | |
action=np.argmax(Q[current_state]) | |
# Take the action and observe the next state and reward | |
next_state, reward, done=take_action(current_state, action) | |
# Update the Q-table using the Bellman equation | |
Q[current_state, action] =Q[current_state, action] +alpha* (reward+gamma*np.max(Q[next_state]) -Q[current_state, action]) | |
current_state=next_state |
下面的示例中,state_space_size 和 action_space_size 别离是环境中的状态数和动作数。num_episodes 是要为运行算法的轮次数。initial_state 是环境的起始状态。take_action(current_state, action) 是一个函数,它将以后状态和一个动作作为输出,并返回下一个状态、处分和一个批示轮次是否实现的布尔值。
在 while 循环中,应用 epsilon-greedy 策略依据以后状态抉择一个动作。应用概率 epsilon 抉择一个随机动作,应用概率 1-epsilon 抉择对以后状态具备最高 Q 值的动作。
采取行动后,察看下一个状态和处分,应用 Bellman 方程更新 q。并将以后状态更新为下一个状态。这只是 Q-learning 的一个简略示例,并未思考 Q-table 的初始化和要解决的问题的具体细节。
2、SARSA
SARSA:SARSA 是一种无模型、基于策略的强化学习算法。它也应用 Bellman 方程来预计动作价值函数,但它是基于下一个动作的期望值,而不是像 Q-learning 中的最优动作。SARSA 以其解决随机动力学问题的能力而闻名。
importnumpyasnp | |
# Define the Q-table and the learning rate | |
Q=np.zeros((state_space_size, action_space_size)) | |
alpha=0.1 | |
# Define the exploration rate and discount factor | |
epsilon=0.1 | |
gamma=0.99 | |
forepisodeinrange(num_episodes): | |
current_state=initial_state | |
action=epsilon_greedy_policy(epsilon, Q, current_state) | |
whilenotdone: | |
# Take the action and observe the next state and reward | |
next_state, reward, done=take_action(current_state, action) | |
# Choose next action using epsilon-greedy policy | |
next_action=epsilon_greedy_policy(epsilon, Q, next_state) | |
# Update the Q-table using the Bellman equation | |
Q[current_state, action] =Q[current_state, action] +alpha* (reward+gamma*Q[next_state, next_action] -Q[current_state, action]) | |
current_state=next_state | |
action=next_action |
state_space_size 和 action_space_size 别离是环境中的状态和操作的数量。num_episodes 是您想要运行 SARSA 算法的轮次数。Initial_state 是环境的初始状态。take_action(current_state, action)是一个将以后状态和作为操作输出的函数,并返回下一个状态、处分和一个批示情节是否实现的布尔值。
在 while 循环中,应用在独自的函数 epsilon_greedy_policy(epsilon, Q, current_state)中定义的 epsilon-greedy 策略来依据以后状态抉择操作。应用概率 epsilon 抉择一个随机动作,应用概率 1-epsilon 对以后状态具备最高 Q 值的动作。
下面与 Q -learning 雷同,然而采取了一个口头后,在察看下一个状态和处分时它而后应用贪婪策略抉择下一个口头。并应用 Bellman 方程更新 q 表。
3、DDPG
DDPG 是一种用于间断动作空间的无模型、非策略算法。它是一种 actor-critic 算法,其中 actor 网络用于抉择动作,而 critic 网络用于评估动作。DDPG 对于机器人管制和其余间断管制工作特地有用。
importnumpyasnp | |
fromkeras.modelsimportModel, Sequential | |
fromkeras.layersimportDense, Input | |
fromkeras.optimizersimportAdam | |
# Define the actor and critic models | |
actor=Sequential() | |
actor.add(Dense(32, input_dim=state_space_size, activation='relu')) | |
actor.add(Dense(32, activation='relu')) | |
actor.add(Dense(action_space_size, activation='tanh')) | |
actor.compile(loss='mse', optimizer=Adam(lr=0.001)) | |
critic=Sequential() | |
critic.add(Dense(32, input_dim=state_space_size, activation='relu')) | |
critic.add(Dense(32, activation='relu')) | |
critic.add(Dense(1, activation='linear')) | |
critic.compile(loss='mse', optimizer=Adam(lr=0.001)) | |
# Define the replay buffer | |
replay_buffer= [] | |
# Define the exploration noise | |
exploration_noise=OrnsteinUhlenbeckProcess(size=action_space_size, theta=0.15, mu=0, sigma=0.2) | |
forepisodeinrange(num_episodes): | |
current_state=initial_state | |
whilenotdone: | |
# Select an action using the actor model and add exploration noise | |
action=actor.predict(current_state)[0] +exploration_noise.sample() | |
action=np.clip(action, -1, 1) | |
# Take the action and observe the next state and reward | |
next_state, reward, done=take_action(current_state, action) | |
# Add the experience to the replay buffer | |
replay_buffer.append((current_state, action, reward, next_state, done)) | |
# Sample a batch of experiences from the replay buffer | |
batch=sample(replay_buffer, batch_size) | |
# Update the critic model | |
states=np.array([x[0] forxinbatch]) | |
actions=np.array([x[1] forxinbatch]) | |
rewards=np.array([x[2] forxinbatch]) | |
next_states=np.array([x[3] forxinbatch]) | |
target_q_values=rewards+gamma*critic.predict(next_states) | |
critic.train_on_batch(states, target_q_values) | |
# Update the actor model | |
action_gradients=np.array(critic.get_gradients(states, actions)) | |
actor.train_on_batch(states, action_gradients) | |
current_state=next_state |
在本例中,state_space_size 和 action_space_size 别离是环境中的状态和操作的数量。num_episodes 是轮次数。Initial_state 是环境的初始状态。Take_action (current_state, action)是一个函数,它承受以后状态和操作作为输出,并返回下一个操作。
4、A2C
A2C(Advantage Actor-Critic)是一种有策略的 actor-critic 算法,它应用 Advantage 函数来更新策略。该算法实现简略,能够解决离散和间断的动作空间。
importnumpyasnp | |
fromkeras.modelsimportModel, Sequential | |
fromkeras.layersimportDense, Input | |
fromkeras.optimizersimportAdam | |
fromkeras.utilsimportto_categorical | |
# Define the actor and critic models | |
state_input=Input(shape=(state_space_size,)) | |
actor=Dense(32, activation='relu')(state_input) | |
actor=Dense(32, activation='relu')(actor) | |
actor=Dense(action_space_size, activation='softmax')(actor) | |
actor_model=Model(inputs=state_input, outputs=actor) | |
actor_model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.001)) | |
state_input=Input(shape=(state_space_size,)) | |
critic=Dense(32, activation='relu')(state_input) | |
critic=Dense(32, activation='relu')(critic) | |
critic=Dense(1, activation='linear')(critic) | |
critic_model=Model(inputs=state_input, outputs=critic) | |
critic_model.compile(loss='mse', optimizer=Adam(lr=0.001)) | |
forepisodeinrange(num_episodes): | |
current_state=initial_state | |
done=False | |
whilenotdone: | |
# Select an action using the actor model and add exploration noise | |
action_probs=actor_model.predict(np.array([current_state]))[0] | |
action=np.random.choice(range(action_space_size), p=action_probs) | |
# Take the action and observe the next state and reward | |
next_state, reward, done=take_action(current_state, action) | |
# Calculate the advantage | |
target_value=critic_model.predict(np.array([next_state]))[0][0] | |
advantage=reward+gamma*target_value-critic_model.predict(np.array([current_state]))[0][0] | |
# Update the actor model | |
action_one_hot=to_categorical(action, action_space_size) | |
actor_model.train_on_batch(np.array([current_state]), advantage*action_one_hot) | |
# Update the critic model | |
critic_model.train_on_batch(np.array([current_state]), reward+gamma*target_value) | |
current_state=next_state |
在这个例子中,actor 模型是一个神经网络,它有 2 个暗藏层,每个暗藏层有 32 个神经元,具备 relu 激活函数,输入层具备 softmax 激活函数。critic 模型也是一个神经网络,它有 2 个隐含层,每层 32 个神经元,具备 relu 激活函数,输入层具备线性激活函数。
应用分类穿插熵损失函数训练 actor 模型,应用均方误差损失函数训练 critic 模型。动作是依据 actor 模型预测抉择的,并增加了用于摸索的噪声。
5、PPO
PPO(Proximal Policy Optimization)是一种策略算法,它应用信赖域优化的办法来更新策略。它在具备高维察看和间断动作空间的环境中特地有用。PPO 以其稳定性和高样品效率而著称。
importnumpyasnp | |
fromkeras.modelsimportModel, Sequential | |
fromkeras.layersimportDense, Input | |
fromkeras.optimizersimportAdam | |
# Define the policy model | |
state_input=Input(shape=(state_space_size,)) | |
policy=Dense(32, activation='relu')(state_input) | |
policy=Dense(32, activation='relu')(policy) | |
policy=Dense(action_space_size, activation='softmax')(policy) | |
policy_model=Model(inputs=state_input, outputs=policy) | |
# Define the value model | |
value_model=Model(inputs=state_input, outputs=Dense(1, activation='linear')(policy)) | |
# Define the optimizer | |
optimizer=Adam(lr=0.001) | |
forepisodeinrange(num_episodes): | |
current_state=initial_state | |
whilenotdone: | |
# Select an action using the policy model | |
action_probs=policy_model.predict(np.array([current_state]))[0] | |
action=np.random.choice(range(action_space_size), p=action_probs) | |
# Take the action and observe the next state and reward | |
next_state, reward, done=take_action(current_state, action) | |
# Calculate the advantage | |
target_value=value_model.predict(np.array([next_state]))[0][0] | |
advantage=reward+gamma*target_value-value_model.predict(np.array([current_state]))[0][0] | |
# Calculate the old and new policy probabilities | |
old_policy_prob=action_probs[action] | |
new_policy_prob=policy_model.predict(np.array([next_state]))[0][action] | |
# Calculate the ratio and the surrogate loss | |
ratio=new_policy_prob/old_policy_prob | |
surrogate_loss=np.minimum(ratio*advantage, np.clip(ratio, 1-epsilon, 1+epsilon) *advantage) | |
# Update the policy and value models | |
policy_model.trainable_weights=value_model.trainable_weights | |
policy_model.compile(optimizer=optimizer, loss=-surrogate_loss) | |
policy_model.train_on_batch(np.array([current_state]), np.array([action_one_hot])) | |
value_model.train_on_batch(np.array([current_state]), reward+gamma*target_value) | |
current_state=next_state |
6、DQN
DQN(深度 Q 网络)是一种无模型、非策略算法,它应用神经网络来迫近 Q 函数。DQN 特地实用于 Atari 游戏和其余相似问题,其中状态空间是高维的,并应用神经网络近似 Q 函数。
importnumpyasnp | |
fromkeras.modelsimportSequential | |
fromkeras.layersimportDense, Input | |
fromkeras.optimizersimportAdam | |
fromcollectionsimportdeque | |
# Define the Q-network model | |
model=Sequential() | |
model.add(Dense(32, input_dim=state_space_size, activation='relu')) | |
model.add(Dense(32, activation='relu')) | |
model.add(Dense(action_space_size, activation='linear')) | |
model.compile(loss='mse', optimizer=Adam(lr=0.001)) | |
# Define the replay buffer | |
replay_buffer=deque(maxlen=replay_buffer_size) | |
forepisodeinrange(num_episodes): | |
current_state=initial_state | |
whilenotdone: | |
# Select an action using an epsilon-greedy policy | |
ifnp.random.rand() <epsilon: | |
action=np.random.randint(0, action_space_size) | |
else: | |
action=np.argmax(model.predict(np.array([current_state]))[0]) | |
# Take the action and observe the next state and reward | |
next_state, reward, done=take_action(current_state, action) | |
# Add the experience to the replay buffer | |
replay_buffer.append((current_state, action, reward, next_state, done)) | |
# Sample a batch of experiences from the replay buffer | |
batch=random.sample(replay_buffer, batch_size) | |
# Prepare the inputs and targets for the Q-network | |
inputs=np.array([x[0] forxinbatch]) | |
targets=model.predict(inputs) | |
fori, (state, action, reward, next_state, done) inenumerate(batch): | |
ifdone: | |
targets[i, action] =reward | |
else: | |
targets[i, action] =reward+gamma*np.max(model.predict(np.array([next_state]))[0]) | |
# Update the Q-network | |
model.train_on_batch(inputs, targets) | |
current_state=next_state |
下面的代码,Q-network 有 2 个暗藏层,每个暗藏层有 32 个神经元,应用 relu 激活函数。该网络应用均方误差损失函数和 Adam 优化器进行训练。
7、TRPO
TRPO(Trust Region Policy Optimization)是一种无模型的策略算法,它应用信赖域优化办法来更新策略。它在具备高维察看和间断动作空间的环境中特地有用。
TRPO 是一个简单的算法,须要多个步骤和组件来实现。TRPO 不是用几行代码就能实现的简略算法。
所以咱们这里应用实现了 TRPO 的现有库,例如 OpenAI Baselines,它提供了包含 TRPO 在内的各种事后实现的强化学习算法,。
要在 OpenAI Baselines 中应用 TRPO,咱们须要装置:
pip install baselines
而后能够应用 baselines 库中的 trpo_mpi 模块在你的环境中训练 TRPO 代理,这里有一个简略的例子:
importgym | |
frombaselines.common.vec_env.dummy_vec_envimportDummyVecEnv | |
frombaselines.trpo_mpiimporttrpo_mpi | |
#Initialize the environment | |
env=gym.make("CartPole-v1") | |
env=DummyVecEnv([lambda: env]) | |
# Define the policy network | |
policy_fn=mlp_policy | |
#Train the TRPO model | |
model=trpo_mpi.learn(env, policy_fn, max_iters=1000) |
咱们应用 Gym 库初始化环境。而后定义策略网络,并调用 TRPO 模块中的 learn()函数来训练模型。
还有许多其余库也提供了 TRPO 的实现,例如 TensorFlow、PyTorch 和 RLLib。上面时一个应用 TF 2.0 实现的样例
importtensorflowastf | |
importgym | |
# Define the policy network | |
classPolicyNetwork(tf.keras.Model): | |
def__init__(self): | |
super(PolicyNetwork, self).__init__() | |
self.dense1=tf.keras.layers.Dense(16, activation='relu') | |
self.dense2=tf.keras.layers.Dense(16, activation='relu') | |
self.dense3=tf.keras.layers.Dense(1, activation='sigmoid') | |
defcall(self, inputs): | |
x=self.dense1(inputs) | |
x=self.dense2(x) | |
x=self.dense3(x) | |
returnx | |
# Initialize the environment | |
env=gym.make("CartPole-v1") | |
# Initialize the policy network | |
policy_network=PolicyNetwork() | |
# Define the optimizer | |
optimizer=tf.optimizers.Adam() | |
# Define the loss function | |
loss_fn=tf.losses.BinaryCrossentropy() | |
# Set the maximum number of iterations | |
max_iters=1000 | |
# Start the training loop | |
foriinrange(max_iters): | |
# Sample an action from the policy network | |
action=tf.squeeze(tf.random.categorical(policy_network(observation), 1)) | |
# Take a step in the environment | |
observation, reward, done, _=env.step(action) | |
withtf.GradientTape() astape: | |
# Compute the loss | |
loss=loss_fn(reward, policy_network(observation)) | |
# Compute the gradients | |
grads=tape.gradient(loss, policy_network.trainable_variables) | |
# Perform the update step | |
optimizer.apply_gradients(zip(grads, policy_network.trainable_variables)) | |
ifdone: | |
# Reset the environment | |
observation=env.reset() |
在这个例子中,咱们首先应用 TensorFlow 的 Keras API 定义一个策略网络。而后应用 Gym 库和策略网络初始化环境。而后定义用于训练策略网络的优化器和损失函数。
在训练循环中,从策略网络中采样一个动作,在环境中前进一步,而后应用 TensorFlow 的 GradientTape 计算损失和梯度。而后咱们应用优化器执行更新步骤。
这是一个简略的例子,只展现了如何在 TensorFlow 2.0 中实现 TRPO。TRPO 是一个非常复杂的算法,这个例子没有涵盖所有的细节,但它是试验 TRPO 的一个很好的终点。
总结
以上就是咱们总结的 7 个罕用的强化学习算法,这些算法并不互相排挤,通常与其余技术 (如值函数迫近、基于模型的办法和集成办法) 联合应用,能够取得更好的后果。
https://avoid.overfit.cn/post/82000e3c65a14403b5e4defae28b703b
作者:Siddhartha Pramanik