共计 3404 个字符,预计需要花费 9 分钟才能阅读完成。
数据
3 万文本,train val test 6 2 2.
工具、手法
pytorch、sklearn、gensim 的 word2vec。
word2vec 嵌入句子进行示意,padding 后,用 LSTM+linear 对句序列向量分类。
代码
import jieba
import xgboost as xgb
from sklearn.model_selection import train_test_split
import numpy as np
from gensim.models import Word2Vec
# reorganize data
def get_split_sentences(file_path):
res_sen=[]
with open(file_path) as f:
for line in f:
split_query=jieba.lcut(line.strip())
res_sen.append(split_query)
return res_sen
label2_sentences=get_split_sentences('label2.csv')
label0_sentences=get_split_sentences('label0.csv')
label1_sentences=get_split_sentences('label1.csv')
all_sentences=[]
all_sentences.extend(label0_sentences)
all_sentences.extend(label1_sentences)
all_sentences.extend(label2_sentences)
# set params
emb_size=128
win=3
model=Word2Vec(sentences=all_sentences,vector_size=emb_size,window=win,min_count=1)
# retrieve word embeddings
w2vec=model.wv
# assemble sentence embeddings
def assemble_x(w2vec:dict,sentences):
sen_vs=[]
for sen in sentences:
v=np.vstack([w2vec[w] for w in sen])
v_len=v.shape[0]
sen_v=np.concatenate((v,np.zeros((max_len-v_len,emb_size)))) if v_len<max_len else v
sen_vs.append(sen_v)
return np.array(sen_vs)
# ready the data for training
x=assemble_x(w2vec,all_sentences)
y=np.array([0]*13000+[1]*13000+[2]*4000)
x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.6,shuffle=True)
x_val,x_test,y_val,y_test=train_test_split(x_test,y_test,train_size=0.5,shuffle=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
mid_dim=32
k_class=3
n=1000
lr=0.1
class Net(nn.Module):
def __init__(self,emb_size,mid_dim,k_class):
super().__init__()
self.lstm=nn.LSTM(emb_size,mid_dim,batch_first=True)
self.lin=nn.Linear(mid_dim,k_class)
def forward(self,x):
_,(hid,cell)=self.lstm(x)
hid=hid.squeeze(0).relu_()
out=self.lin(hid)
return F.softmax(out,dim=-1)
simple_net=Net(emb_size,mid_dim,k_class).to(device)
# simple_net=nn.LSTM(emb_size,mid_dim,batch_first=True)#nn.Sequential(,nn.ReLU(),nn.Linear(mid_dim,k_class),nn.Softmax())
x_train=torch.from_numpy(x_train).float().to(device)
y_train=torch.from_numpy(y_train).to(device)
x_val=torch.from_numpy(x_val).float().to(device)
y_val=torch.from_numpy(y_val).to(device)
optimizer=optim.Adam(simple_net.parameters(),lr=lr)
for i in range(n):
optimizer.zero_grad()
preds=simple_net(x_train)
loss=F.cross_entropy(preds,y_train)
loss_val=F.cross_entropy(simple_net(x_val),y_val)
if i%100==0:
print(f'{i} loss train: {loss.item()}, loss val: {loss_val.item()}')
loss.backward()
optimizer.step()
with torch.no_grad():
x_test=torch.from_numpy(x_test).float().to(device)
y_test=torch.from_numpy(y_test)
simple_net.eval()
preds_test=simple_net(x_test).cpu().argmax(-1)
# labels 是 numpy 的 one hot 标签
# preds_test=np.argmax(preds_test,dim=)
def get_scores(preds,gt):
from sklearn import metrics
# print ('AUC: %.4f' % metrics.roc_auc_score(gt,preds))
print ('ACC: %.4f' % metrics.accuracy_score(gt,preds))
print('macro')
print('Recall: %.4f' % metrics.recall_score(y_test,preds,average='macro'))
print('F1-score: %.4f' %metrics.f1_score(gt,preds,average='macro'))
print('Precision: %.4f' %metrics.precision_score(gt,preds,average='macro'))
print('\nmicro:')
print('Recall: %.4f' % metrics.recall_score(y_test,preds,average='micro'))
print('F1-score: %.4f' %metrics.f1_score(gt,preds,average='micro'))
print('Precision: %.4f' %metrics.precision_score(gt,preds,average='micro'))
get_scores(preds_test,y_test)
后果
ACC: 0.4303
macro:
Recall: 0.3333
F1-score: 0.2006
Precision: 0.1434
micro:
Recall: 0.4303
F1-score: 0.4303
Precision: 0.4303
小结
成果十分差,起因次要有
- padding 的 0 向量过于多了,导致模型失去的大部分都是 0 向量;
- 并未对 lstm 做任何参数调整(懒
正文完