关于人工智能:10种常见的回归算法总结和介绍

40次阅读

共计 15796 个字符,预计需要花费 40 分钟才能阅读完成。

线性回归是机器学习中最简略的算法,它能够通过不同的形式进行训练。在本文中,咱们将介绍以下回归算法:线性回归、Robust 回归、Ridge 回归、LASSO 回归、Elastic Net、多项式回归、多层感知机、随机森林回归和反对向量机。除此以外,本文还将介绍用于评估回归模型的最罕用指标,包含均方误差 (MSE)、均方根误差 (RMSE) 和均匀绝对误差 (MAE)。

导入库和读取数据

 import pandas as pd
 import numpy as np
 import matplotlib.pyplot as plt
 import seaborn as sns
 import hvplot.pandas
 %matplotlib inline
 
 sns.set_style("whitegrid")
 plt.style.use("fivethirtyeight")
 
 USAhousing = pd.read_csv('../usa-housing/USA_Housing.csv')
 USAhousing.head()

探索性数据分析 (EDA)

下一步将创立一些简略的图表来检查数据。进行 EDA 将帮忙咱们相熟数据和取得数据的信息,尤其是对回归模型影响最大的异样值。

 USAhousing.info()
 
 <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 5000 entries, 0 to 4999
 Data columns (total 7 columns):
  #   Column                        Non-Null Count  Dtype  
 ---  ------                        --------------  -----  
  0   Avg. Area Income              5000 non-null   float64
  1   Avg. Area House Age           5000 non-null   float64
  2   Avg. Area Number of Rooms     5000 non-null   float64
  3   Avg. Area Number of Bedrooms  5000 non-null   float64
  4   Area Population               5000 non-null   float64
  5   Price                         5000 non-null   float64
  6   Address                       5000 non-null   object 
 dtypes: float64(6), object(1)
 memory usage: 273.6+ KB

查看数据集的形容

 USAhousing.describe()

训练前的筹备

咱们将从训练一个线性回归模型开始,训练之前须要确定数据的特色和指标,训练的特色的 X,指标变量的 y,在本例中咱们的指标为 Price 列。

之后,将数据分成训练集和测试集。咱们将在训练集上训练咱们的模型,而后应用测试集来评估模型。

 from sklearn.model_selection import train_test_split
 
 X = USAhousing[['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms',
                'Avg. Area Number of Bedrooms', 'Area Population']]
 y = USAhousing['Price']
 
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

为了评估回归模型还创立了一些辅助函数。

 from sklearn import metrics
 from sklearn.model_selection import cross_val_score
 
 def cross_val(model):
     pred = cross_val_score(model, X, y, cv=10)
     return pred.mean()
 
 def print_evaluate(true, predicted):  
     mae = metrics.mean_absolute_error(true, predicted)
     mse = metrics.mean_squared_error(true, predicted)
     rmse = np.sqrt(metrics.mean_squared_error(true, predicted))
     r2_square = metrics.r2_score(true, predicted)
     print('MAE:', mae)
     print('MSE:', mse)
     print('RMSE:', rmse)
     print('R2 Square', r2_square)
     print('__________________________________')
     
 def evaluate(true, predicted):
     mae = metrics.mean_absolute_error(true, predicted)
     mse = metrics.mean_squared_error(true, predicted)
     rmse = np.sqrt(metrics.mean_squared_error(true, predicted))
     r2_square = metrics.r2_score(true, predicted)
     return mae, mse, rmse, r2_square

训练回归模型

对于线性回归而言,个别都会有以下的假如:

线性假如:线性回归假如输出和输入之间的关系是线性的。所以可能须要转换数据以使关系线性化(例如,指数关系的对数转换)。

去除乐音:线性回归假如您的输出和输入变量没有噪声。这对于输入变量最重要,如果可能心愿删除输入变量 (y) 中的异样值。

去除共线性:当具备高度相干的输出变量时,线性回归将会过拟合。须要将输出数据进行相关性计算并删除最相干的。

高斯分布:如果输出和输入变量具备高斯分布,线性回归将会做出更牢靠的预测。对于散布的转换能够对变量应用变换(例如 log 或 BoxCox)以使它们的散布看起来更像高斯分布。

对数据进行解决:应用标准化或归一化从新调整输出变量,线性回归通常会做出更牢靠的预测。

 from sklearn.preprocessing import StandardScaler
 from sklearn.pipeline import Pipeline
 
 pipeline = Pipeline([('std_scalar', StandardScaler())
 ])
 
 X_train = pipeline.fit_transform(X_train)
 X_test = pipeline.transform(X_test)

上面咱们开始进行回归回归算法的示例

1、线性回归和评估指标

 from sklearn.linear_model import LinearRegression
 
 lin_reg = LinearRegression(normalize=True)
 lin_reg.fit(X_train,y_train)

有了第一个模型,那么就要晓得评估模型的指标,以下是回归问题的三个常见评估指标:

均匀绝对误差 (MAE) 是误差绝对值的平均值:

均方误差 (MSE) 是均方误差的平均值:

均方根误差 (RMSE) 是均方误差的平方根:

这三个指标中:

  • MAE 是最容易了解的,因为它是平均误差。
  • MSE 比 MAE 更受欢迎,因为 MSE“惩办”更大的谬误,这在事实世界中往往很有用。
  • RMSE 比 MSE 更受欢迎,因为 RMSE 能够用“y”单位解释

这些都是损失函数,咱们的训练指标就是最小化他们。

 test_pred = lin_reg.predict(X_test)
 train_pred = lin_reg.predict(X_train)
 
 print('Test set evaluation:\n_____________________________________')
 print_evaluate(y_test, test_pred)
 print('Train set evaluation:\n_____________________________________')
 print_evaluate(y_train, train_pred)
 
 results_df = pd.DataFrame(data=[["Linear Regression", *evaluate(y_test, test_pred) , 
    cross_val(LinearRegression())]], 
 columns=['Model', 'MAE', 'MSE', 'RMSE', 'R2 Square', "Cross Validation"])
 
 Test set evaluation:
 _____________________________________
 MAE: 81135.56609336878
 MSE: 10068422551.40088
 RMSE: 100341.52954485436
 R2 Square 0.9146818498754016
 __________________________________
 Train set evaluation:
 _____________________________________
 MAE: 81480.49973174892
 MSE: 10287043161.197224
 RMSE: 101425.06180031257
 R2 Square 0.9192986579075526
 __________________________________

2、Robust 回归

Robust 回归是一种回归剖析模式,它的指标是克服传统参数和非参数办法的一些局限性,旨在不受根底数据生成过程违反回归假如的适度影响。

当数据蕴含异样值时,则会思考 Robust 回归。在存在异样值的状况下,最小二乘预计效率低下并且可能存在偏差。因为最小二乘预测被拖向离群值,并且因为预计的方差被人为夸张,后果是离群值能够被覆盖了。

随机样本共识——RANSAC

随机样本共识 (RANSAC) 是一种迭代办法,它从一组察看到的蕴含异样值的数据中预计数学模型的参数,而异样值不会对估计值产生影响。因而它也能够了解为一种异样值检测办法。

一个根本的假如是,数据由“内值”和“异样值”组成,“内值”即数据的散布能够用一组模型参数来解释,但可能受噪声影响,“异样值”是不合乎模型的数据。RANSAC 还假如,给定一组 (通常很小) 内点,存在一个程序能够预计模型的参数,以最优地解释或拟合该数据。

 from sklearn.linear_model import RANSACRegressor
 
 model = RANSACRegressor(base_estimator=LinearRegression(), max_trials=100)
 model.fit(X_train, y_train)
 
 test_pred = model.predict(X_test)
 train_pred = model.predict(X_train)
 
 print('Test set evaluation:\n_____________________________________')
 print_evaluate(y_test, test_pred)
 print('====================================')
 print('Train set evaluation:\n_____________________________________')
 print_evaluate(y_train, train_pred)
 
 results_df_2 = pd.DataFrame(data=[["Robust Regression", *evaluate(y_test, test_pred) , cross_val(RANSACRegressor())]],
 columns=['Model', 'MAE', 'MSE', 'RMSE', 'R2 Square', "Cross Validation"]
 )
 
 results_df = results_df.append(results_df_2, ignore_index=True)
 
 Test set evaluation:
 _____________________________________
 MAE: 84645.31069259303
 MSE: 10996805871.555056
 RMSE: 104865.65630155115
 R2 Square 0.9068148829222649
 __________________________________
 ====================================
 Train set evaluation:
 _____________________________________
 MAE: 84956.48056962446
 MSE: 11363196455.35414
 RMSE: 106598.29480509592
 R2 Square 0.9108562888249323
 _________________________________

3、Ridge 回归

Ridge 回归通过对系数的大小施加惩办来解决一般最小二乘法的一些问题。Ridge 系数最小化惩办残差平方和

alpha >= 0 是管制膨胀量的复杂性参数:alpha 值越大,膨胀量越大,因而系数对共线性的鲁棒性更强。

Ridge 回归是一个 L2 惩办模型。将权重的平方和增加到最小二乘老本函数。

 from sklearn.linear_model import Ridge
 
 model = Ridge(alpha=100, solver='cholesky', tol=0.0001, random_state=42)
 model.fit(X_train, y_train)
 pred = model.predict(X_test)
 
 test_pred = model.predict(X_test)
 train_pred = model.predict(X_train)
 
 print('Test set evaluation:\n_____________________________________')
 print_evaluate(y_test, test_pred)
 print('====================================')
 print('Train set evaluation:\n_____________________________________')
 print_evaluate(y_train, train_pred)
 
 results_df_2 = pd.DataFrame(data=[["Ridge Regression", *evaluate(y_test, test_pred) , cross_val(Ridge())]],
 columns=['Model', 'MAE', 'MSE', 'RMSE', 'R2 Square', "Cross Validation"]
 )
 
 results_df = results_df.append(results_df_2, ignore_index=True)
 
 Test set evaluation:
 _____________________________________
 MAE: 81428.64835535336
 MSE: 10153269900.892609
 RMSE: 100763.43533689494
 R2 Square 0.9139628674464607
 __________________________________
 ====================================
 Train set evaluation:
 _____________________________________
 MAE: 81972.39058585509
 MSE: 10382929615.14346
 RMSE: 101896.66145239233
 R2 Square 0.9185464334441484
 __________________________________

4、LASSO 回归

LASSO 回归是一种预计稠密系数的线性模型。在数学上,它由一个用 L1 先验作为正则化器训练的线性模型组成。最小化的指标函数是:

 from sklearn.linear_model import Lasso
 
 model = Lasso(alpha=0.1, 
               precompute=True, 
 #               warm_start=True, 
               positive=True, 
               selection='random',
               random_state=42)
 model.fit(X_train, y_train)
 
 test_pred = model.predict(X_test)
 train_pred = model.predict(X_train)
 
 print('Test set evaluation:\n_____________________________________')
 print_evaluate(y_test, test_pred)
 print('====================================')
 print('Train set evaluation:\n_____________________________________')
 print_evaluate(y_train, train_pred)
 
 results_df_2 = pd.DataFrame(data=[["Lasso Regression", *evaluate(y_test, test_pred) , cross_val(Lasso())]], 
 columns=['Model', 'MAE', 'MSE', 'RMSE', 'R2 Square', "Cross Validation"]
 )
 
 results_df = results_df.append(results_df_2, ignore_index=True)
 
 Test set evaluation:
 _____________________________________
 MAE: 81135.6985172622
 MSE: 10068453390.364521
 RMSE: 100341.68321472648
 R2 Square 0.914681588551116
 __________________________________
 ====================================
 Train set evaluation:
 _____________________________________
 MAE: 81480.63002185506
 MSE: 10287043196.634295
 RMSE: 101425.0619750084
 R2 Square 0.9192986576295505
 __________________________________

5、Elastic Net

Elastic Net 应用 L1 和 L2 先验作为正则化器进行训练。这种组合容许学习一个稠密模型,其中很少有像 Lasso 那样的非零权重,同时依然放弃 Ridge 的正则化属性。

当多个特色互相关联时,Elastic Net 络很有用。Lasso 可能会随机抉择关联特色其中之一,而 Elastic Net 可能会同时抉择两者。Elastic Net 最小化的指标函数是:

 from sklearn.linear_model import ElasticNet
 
 model = ElasticNet(alpha=0.1, l1_ratio=0.9, selection='random', random_state=42)
 model.fit(X_train, y_train)
 
 test_pred = model.predict(X_test)
 train_pred = model.predict(X_train)
 
 print('Test set evaluation:\n_____________________________________')
 print_evaluate(y_test, test_pred)
 print('====================================')
 print('Train set evaluation:\n_____________________________________')
 print_evaluate(y_train, train_pred)
 
 results_df_2 = pd.DataFrame(data=[["Elastic Net Regression", *evaluate(y_test, test_pred) , cross_val(ElasticNet())]], 
 columns=['Model', 'MAE', 'MSE', 'RMSE', 'R2 Square', "Cross Validation"]
 )
 
 results_df = results_df.append(results_df_2, ignore_index=True)
 
 Test set evaluation:
 _____________________________________
 MAE: 81184.43147330945
 MSE: 10078050168.470106
 RMSE: 100389.49232100991
 R2 Square 0.9146002670381437
 __________________________________
 ====================================
 Train set evaluation:
 _____________________________________
 MAE: 81577.88831531754
 MSE: 10299274948.101461
 RMSE: 101485.34351373829
 R2 Square 0.9192027001474953
 __________________________________

6、多项式回归

机器学习中的一种常见模式是应用在数据的非线性函数上训练的线性模型。这种办法放弃了线性办法通常疾速的性能,同时容许它们适应更宽泛的数据。

能够通过从系数结构多项式特色来扩大简略的线性回归。在规范线性回归中,可能有一个看起来像这样的二维数据模型:

如果咱们想对数据拟合抛物面而不是立体,咱们能够将特色组合成二阶多项式,使模型看起来像这样:

这依然是一个线性模型:那么如果咱们创立一个新的变量

通过从新标记数据,那么公式能够写成

能够看到到生成的多项式回归属于下面的同一类线性模型(即模型在 w 中是线性的),并且能够通过雷同的技术求解。通过思考应用这些基函数构建的高维空间内的线性拟合,该模型能够灵便地拟合更宽泛的数据范畴。

 from sklearn.preprocessing import PolynomialFeatures
 
 poly_reg = PolynomialFeatures(degree=2)
 
 X_train_2_d = poly_reg.fit_transform(X_train)
 X_test_2_d = poly_reg.transform(X_test)
 
 lin_reg = LinearRegression(normalize=True)
 lin_reg.fit(X_train_2_d,y_train)
 
 test_pred = lin_reg.predict(X_test_2_d)
 train_pred = lin_reg.predict(X_train_2_d)
 
 print('Test set evaluation:\n_____________________________________')
 print_evaluate(y_test, test_pred)
 print('====================================')
 print('Train set evaluation:\n_____________________________________')
 print_evaluate(y_train, train_pred)
 
 results_df_2 = pd.DataFrame(data=[["Polynomail Regression", *evaluate(y_test, test_pred), 0]], 
 columns=['Model', 'MAE', 'MSE', 'RMSE', 'R2 Square', 'Cross Validation']
 )
 
 results_df = results_df.append(results_df_2, ignore_index=True)
 
 Test set evaluation:
 _____________________________________
 MAE: 81174.51844119698
 MSE: 10081983997.620703
 RMSE: 100409.0832426066
 R2 Square 0.9145669324195059
 __________________________________
 ====================================
 Train set evaluation:
 _____________________________________
 MAE: 81363.0618562117
 MSE: 10266487151.007816
 RMSE: 101323.67517519198
 R2 Square 0.9194599187853729
 __________________________________

7、随机梯度降落

梯度降落是一种十分通用的优化算法,可能为各种问题找到最佳解决方案。梯度降落的个别思维是迭代地调整参数以最小化老本函数。梯度降落测量误差函数绝对于参数向量的部分梯度,它沿着梯度降落的方向后退。一旦梯度为零,就达到了最小值。

 from sklearn.linear_model import SGDRegressor
 
 sgd_reg = SGDRegressor(n_iter_no_change=250, penalty=None, eta0=0.0001, max_iter=100000)
 sgd_reg.fit(X_train, y_train)
 
 test_pred = sgd_reg.predict(X_test)
 train_pred = sgd_reg.predict(X_train)
 
 print('Test set evaluation:\n_____________________________________')
 print_evaluate(y_test, test_pred)
 print('====================================')
 print('Train set evaluation:\n_____________________________________')
 print_evaluate(y_train, train_pred)
 
 results_df_2 = pd.DataFrame(data=[["Stochastic Gradient Descent", *evaluate(y_test, test_pred), 0]],
 columns=['Model', 'MAE', 'MSE', 'RMSE', 'R2 Square', 'Cross Validation']
 )
 
 results_df = results_df.append(results_df_2, ignore_index=True)
 
 Test set evaluation:
 _____________________________________
 MAE: 81135.56682170597
 MSE: 10068422777.172981
 RMSE: 100341.53066987259
 R2 Square 0.914681847962246
 __________________________________
 ====================================
 Train set evaluation:
 _____________________________________
 MAE: 81480.49901528798
 MSE: 10287043161.228634
 RMSE: 101425.06180046742
 R2 Square 0.9192986579073061
 __________________________________

8、多层感知机

多层感知机绝对于简略回归工作的益处是简略的线性回归模型只能学习特色和指标之间的线性关系,因而无奈学习简单的非线性关系。因为每一层都存在激活函数,多层感知机有能力学习特色和指标之间的简单关系。

 from tensorflow.keras.models import Sequential
 from tensorflow.keras.layers import Input, Dense, Activation, Dropout
 from tensorflow.keras.optimizers import Adam
 
 X_train = np.array(X_train)
 X_test = np.array(X_test)
 y_train = np.array(y_train)
 y_test = np.array(y_test)
 
 model = Sequential()
 
 model.add(Dense(X_train.shape[1], activation='relu'))
 model.add(Dense(32, activation='relu'))
 # model.add(Dropout(0.2))
 
 model.add(Dense(64, activation='relu'))
 # model.add(Dropout(0.2))
 
 model.add(Dense(128, activation='relu'))
 # model.add(Dropout(0.2))
 
 model.add(Dense(512, activation='relu'))
 model.add(Dropout(0.1))
 model.add(Dense(1))
 
 model.compile(optimizer=Adam(0.00001), loss='mse')
 
 r = model.fit(X_train, y_train,
               validation_data=(X_test,y_test),
               batch_size=1,
               epochs=100)
 pd.DataFrame({'True Values': y_test, 'Predicted Values': pred}).hvplot.scatter(x='True Values', y='Predicted Values')
 pd.DataFrame(r.history)

 pd.DataFrame(r.history).hvplot.line(y=['loss', 'val_loss'])

 test_pred = model.predict(X_test)
 train_pred = model.predict(X_train)
 
 print('Test set evaluation:\n_____________________________________')
 print_evaluate(y_test, test_pred)
 
 print('Train set evaluation:\n_____________________________________')
 print_evaluate(y_train, train_pred)
 
 results_df_2 = pd.DataFrame(data=[["Artficial Neural Network", *evaluate(y_test, test_pred), 0]], 
 columns=['Model', 'MAE', 'MSE', 'RMSE', 'R2 Square', 'Cross Validation']
 )
 
 results_df = results_df.append(results_df_2, ignore_index=True)
 
 Test set evaluation:
 _____________________________________
 MAE: 101035.09313018023
 MSE: 16331712517.46175
 RMSE: 127795.58880282899
 R2 Square 0.8616077649459881
 __________________________________
 Train set evaluation:
 _____________________________________
 MAE: 102671.5714851714
 MSE: 17107402549.511665
 RMSE: 130795.2695991398
 R2 Square 0.8657932776379376
 __________________________________

9、随机森林回归

 from sklearn.ensemble import RandomForestRegressor
 
 rf_reg = RandomForestRegressor(n_estimators=1000)
 rf_reg.fit(X_train, y_train)
 
 test_pred = rf_reg.predict(X_test)
 train_pred = rf_reg.predict(X_train)
 
 print('Test set evaluation:\n_____________________________________')
 print_evaluate(y_test, test_pred)
 
 print('Train set evaluation:\n_____________________________________')
 print_evaluate(y_train, train_pred)
 
 results_df_2 = pd.DataFrame(data=[["Random Forest Regressor", *evaluate(y_test, test_pred), 0]], 
 columns=['Model', 'MAE', 'MSE', 'RMSE', 'R2 Square', 'Cross Validation']
 )
 
 results_df = results_df.append(results_df_2, ignore_index=True)
 
 Test set evaluation:
 _____________________________________
 MAE: 94032.15903928125
 MSE: 14073007326.955029
 RMSE: 118629.70676417871
 R2 Square 0.8807476597554337
 __________________________________
 Train set evaluation:
 _____________________________________
 MAE: 35289.68268023927
 MSE: 1979246136.9966476
 RMSE: 44488.71921056671
 R2 Square 0.9844729124701823
 __________________________________

10、反对向量机

 from sklearn.svm import SVR
 
 svm_reg = SVR(kernel='rbf', C=1000000, epsilon=0.001)
 svm_reg.fit(X_train, y_train)
 
 test_pred = svm_reg.predict(X_test)
 train_pred = svm_reg.predict(X_train)
 
 print('Test set evaluation:\n_____________________________________')
 print_evaluate(y_test, test_pred)
 
 print('Train set evaluation:\n_____________________________________')
 print_evaluate(y_train, train_pred)
 
 results_df_2 = pd.DataFrame(data=[["SVM Regressor", *evaluate(y_test, test_pred), 0]], 
 columns=['Model', 'MAE', 'MSE', 'RMSE', 'R2 Square', 'Cross Validation']
 )
 
 results_df = results_df.append(results_df_2, ignore_index=True)
 
 Test set evaluation:
 _____________________________________
 MAE: 87205.73051021634
 MSE: 11720932765.275513
 RMSE: 108263.25676458987
 R2 Square 0.9006787511983232
 __________________________________
 Train set evaluation:
 _____________________________________
 MAE: 73692.5684807321
 MSE: 9363827731.411337
 RMSE: 96766.87310960986
 R2 Square 0.9265412370487783
 __________________________________
 

后果比照

以上就是咱们常见的 10 个回归算法,上面看看后果的比照

 results_df

 results_df.set_index('Model', inplace=True)
 results_df['R2 Square'].plot(kind='barh', figsize=(12, 8))

能够看到,尽管本例的差异很小(这是因为数据集的起因),然而每个算法还是有轻微的差异的,咱们能够依据不同的理论状况抉择体现较好的算法。

总结

在本文中,咱们介绍了机器学习中的常见的线性回归算法包含:

  • 常见的线性回归模型(Ridge、Lasso、ElasticNet……)
  • 模型应用的办法
  • 采纳学习算法对模型中的系数进行预计
  • 如何评估线性回归模型

如果你对代码感兴趣,本文的残缺源代码在这里:

https://avoid.overfit.cn/post/80b712f97fce48418be96916262f9f81

作者:Fares Sayah

正文完
 0