关于python:opencv-最大内接矩形笔记

66次阅读

共计 2359 个字符,预计需要花费 6 分钟才能阅读完成。

include<opencv2\opencv.hpp>

include <iostream>

include<vector>

using namespace cv;
using namespace std;
/**

  • @brief expandEdge 扩大边界函数
  • @param img: 输出图像,单通道二值图,深度为 8
  • @param edge 边界数组,寄存 4 条边界值
  • @param edgeID 以后边界号
  • @return 布尔值 确定以后边界是否能够扩大
    */
    bool expandEdge(const Mat & img, int edge[], const int edgeID)
    {
    //[1] – 初始化参数
    int nc = img.cols;
    int nr = img.rows;
    switch (edgeID) {
    case 0:

      if (edge[0]>nr)
          return false;
      for (int i = edge[3]; i <= edge[1]; ++i)
      {if (img.at<uchar>(edge[0], i) == 255)// 遇见 255 像素表明碰到边缘线
              return false;
      }
      edge[0]++;
      return true;
      break;

    case 1:

      if (edge[1]>nc)
          return false;
      for (int i = edge[2]; i <= edge[0]; ++i)
      {if (img.at<uchar>(i, edge[1]) == 255)// 遇见 255 像素表明碰到边缘线
              return false;
      }
      edge[1]++;
      return true;
      break;

    case 2:

      if (edge[2]<0)
          return false;
      for (int i = edge[3]; i <= edge[1]; ++i)
      {if (img.at<uchar>(edge[2], i) == 255)// 遇见 255 像素表明碰到边缘线
              return false;
      }
      edge[2]--;
      return true;
      break;

    case 3:

      if (edge[3]<0)
          return false;
      for (int i = edge[2]; i <= edge[0]; ++i)
      {if (img.at<uchar>(i, edge[3]) == 255)// 遇见 255 像素表明碰到边缘线
              return false;
      }
      edge[3]--;
      return true;
      break;

    default:

      return false;
      break;

    }
    }
    /**

  • @brief 求取连通区域内接矩
  • @param img: 输出图像,单通道二值图,深度为 8
  • @param center: 最小外接矩的核心
  • @return 最大内接矩形
  • 基于核心扩大算法
    */
    cv::Rect InSquare(Mat &img, const Point center)
    {
    // –[1] 参数检测
    if (img.empty() ||img.channels()>1|| img.depth()>8)

      return Rect();

    // –[2] 初始化变量
    int edge[4];
    edge[0] = center.y + 1;//top
    edge[1] = center.x + 1;//right
    edge[2] = center.y – 1;//bottom
    edge[3] = center.x – 1;//left

                         //[2]
                         // --[3]边界扩大(核心扩散法)

    bool EXPAND[4] = {1,1,1,1};// 扩大标记位
    int n = 0;
    while (EXPAND[0] || EXPAND[1] || EXPAND[2] || EXPAND[3])
    {

      int edgeID = n % 4;
      EXPAND[edgeID] = expandEdge(img, edge, edgeID);
      n++;

    }
    //[3]
    //qDebug() << edge[0] << edge[1] << edge[2] << edge[3];
    Point tl = Point(edge[3], edge[0]);
    Point br = Point(edge[1], edge[2]);
    return Rect(tl, br);
    }
    int main()
    {
    bool isExistence = false;
    float first_area = 0;
    /// 加载源图像
    Mat src;
    src = imread(“cen.bmp”, 1);
    //src = imread(“C:\Users\Administrator\Desktop\ 测试图片 \xxx\20190308152516.jpg”,1);
    //src = PayPal 下载 imread(“C:\Users\Administrator\Desktop\ 测试图片 \xx\20190308151912.jpg”,1);
    //src = imread(“C:\Users\Administrator\Desktop\ 测试图像 \2\BfImg17(x-247 y–91 z–666)-(492,280).jpg”,1);
    cvtColor(src, src, CV_RGB2GRAY);
    threshold(src, src, 100, 255, THRESH_BINARY);
    Rect ccomp;
    Point center(src.cols / 2, src.rows / 2);
    //floodFill(src, center, Scalar(255, 255, 55), &ccomp, Scalar(20, 20, 20), Scalar(20, 20, 20));
    if (src.empty())
    {

      cout << "fali" << endl;

    }
    //resize(src, src, cv::Size(496, 460), cv::INTER_LINEAR);
    imshow(“src”, src);
    Rect rr = InSquare(src, center);
    rectangle(src, rr, Scalar(255), 1, 8);
    imshow(“src2”, src);
    waitKey(0);
    getchar();
    return 0;
    }

正文完
 0