关于python:水果识别系统python

44次阅读

共计 1225 个字符,预计需要花费 4 分钟才能阅读完成。

介绍

水果识别系统,应用 Python 作为次要开发语言,基于深度学习 TensorFlow 框架,搭建卷积神经网络算法。并通过对 5 种垃圾数据集进行训练,最初失去一个辨认精度较高的模型。并基于 Django 框架,开发网页端操作平台,实现用户上传一张图片辨认其名称。

成果展现

演示视频

视频 + 源码:https://www.yuque.com/ziwu/yygu3z/sr43e6q0wormmfpv

相干代码


def upload_img(request):
    # 图片上传
    file = request.FILES.get('file')
    file_name = file.name
    file_name = '{}.{}'.format(int(time.time()), str(file_name).rsplit('.')[-1])
    with open(os.path.join(settings.MEDIA_ROOT, file_name), 'wb') as f:
        for chunk in file.chunks():
            f.write(chunk)
    upload_url = request.build_absolute_uri(settings.MEDIA_URL + file_name)
    ImageCheck.objects.create(file_name=file_name, file_url=upload_url)
    return JsonResponse({'code': 200, 'data': {'url': upload_url}})


def check_img(request):
    # 图片检测
    image_url = request.POST.get('img_url')
    if not image_url:
        return JsonResponse({'code': 400, 'message': '短少必传的参数'})
    image_name = image_url.rsplit('/')[-1]
    image_path = os.path.join(settings.MEDIA_ROOT, image_name)
    pred_name = check_handle(image_path)

    obj = ImageCheck.objects.filter(file_name=image_name).last()
    obj.check_result = pred_name
    obj.save()
    return JsonResponse({'code': 200, 'data': {'pred_name': pred_name}})

实现步骤

● 首先收集须要辨认的品种数据集
● 而后基于 TensorFlow 搭建 ResNet50 卷积神经网络算法模型,并通过多轮迭代训练,最终失去一个精度较高的模型,并将其保留为 h5 格局的本地文件。
● 基于 Django 开发网页端可视化操作平台,HTML、CSS、BootStrap 等技术搭建前端界面。Django 作为后端逻辑解决框架。Ajax 实现前后端的数据通信。

正文完
 0