关于python:多线程多进程多协程转载

47次阅读

共计 2885 个字符,预计需要花费 8 分钟才能阅读完成。

多线程多过程多协程(转载)

  • Bilibili 蚂蚁学 Python UP 主说得很好
  • 工作中看视频不不便,截取重点局部改为文字版,不便抄作业
  • 原地址:https://www.bilibili.com/video/BV1bK411A7tV

多线程

  1. 定义一个函数

    def my_func(a,b):
     do_something(a,b)
  2. 创立线程

    import threading
    
    t = threading.Thread(target=my_func, args=(a, b))
  3. 启动线程

    t.start()
  4. 期待完结

    t.join()

队列

  • queue.Queue 是线程平安的

    import queue
    
    q = queue.Queue()
    
    # 增加与获取
    q.put(time)
    item = q.get()
    
    # 查看状态
    q.qsize()
    q.empty()
    q.full()

线程平安(锁)

  1. try-finally

    import threading
    
    lock = threading.Lock()
    lock.acquire()
    try:
     # do something
    finally:
     lock.release()
  2. with

    import threading
    
    lock = threading.Lock()
    with lock:
     # do something

线程池

  1. map 函数,后果预入参程序对应

    from concurrent.futures import ThreadPoolExecutor
    
    arg_list = []
    
    with ThreadPoolExecutor() as pool:
     results = pool.map(my_func, arg_list)
    
     for result in results:
         print(results)
  2. submit 函数,as_completed 程序可按实现程序

    from concurrent.futures import ThreadPoolExecutor, as_completed
    
    arg_list = []
    
    with ThreadPoolExecutor() as pool:
     futures = [pool.submit(my_func, arg) for arg in arg_list]
    
     # 按输出程序
     for future in futures:
         print(future.result())
    
     # 按实现程序
     for future in as_completed(futures):
         print(future.result())

Flask 中应用线程池

import time
from concurrent.futures import ThreadPoolExecutor
from flask import Flask

app = Flask(__name__)
pool = ThreadPoolExecutor()


def do_1():
    time.sleep(1)
    return 'do_1'


def do_2():
    time.sleep(1)
    return 'do_2'


def do_3():
    time.sleep(1)
    return 'do_3'


@app.route("/")
def index():
    result_1 = pool.submit(do_1)
    result_2 = pool.submit(do_2)
    result_3 = pool.submit(do_3)
    return {'1': result_1.result(),
        '2': result_2.result(),
        '3': result_3.result(),}


if __name__ == "__main__":
    app.run()

多过程

图片截图自 蚂蚁学 Python Bilibili 03:00

Flask 应用多过程

import time
from concurrent.futures import ProcessPoolExecutor
from flask import Flask

app = Flask(__name__)


def do_1():
    time.sleep(1)
    return 'do_1'


def do_2():
    time.sleep(1)
    return 'do_2'


def do_3():
    time.sleep(1)
    return 'do_3'


@app.route("/")
def index():
    result_1 = pool.submit(do_1)
    result_2 = pool.submit(do_2)
    result_3 = pool.submit(do_3)
    return {'1': result_1.result(),
        '2': result_2.result(),
        '3': result_3.result(),}


if __name__ == "__main__":
    pool = ProcessPoolExecutor()
    app.run()

协程:asyncio、await

import asyncio
import aiohttp

loop = asyncio.get_event_loop()


async def get_url(url):
    async with aiohttp.ClientSession() as session:
        async with session.get(url) as resp:
            result = await resp.text()
            print(f"url:{url},{len(result)}")


urls = [f"https://www.cnblogs.com/#p{page}" for page in range(1, 50 + 1)]

tasks = [loop.create_task(get_url(url)) for url in urls]

loop.run_until_complete(asyncio.wait(tasks))

管制 asyncio 并发数

  1. try-finally

    import asyncio
    sem = asyncio.Semaphore(10)
    
    await sem.acquire()
    try:
     # do something
    finally:
     sem.release()
  2. with

    import asyncio
    sem = asyncio.Semaphore(10)
    
    async with sem:
     # do something
  • 举例

    import asyncio
    import aiohttp
    
    loop = asyncio.get_event_loop()
    
    # 限度 10 个并发
    semaphore = asyncio.Semaphore(10)
    
    
    async def get_url(url):
      async with semaphore:
          async with aiohttp.ClientSession() as session:
              async with session.get(url) as resp:
                  result = await resp.text()
                  print(f"url:{url},{len(result)}")
    
    
    urls = [f"https://www.cnblogs.com/#p{page}" for page in range(1, 50 + 1)]
    
    tasks = [loop.create_task(get_url(url)) for url in urls]
    
    loop.run_until_complete(asyncio.wait(tasks))
    

正文完
 0