关于leetcode:94-Binary-Tree-Inorder-Traversal

78次阅读

共计 3092 个字符,预计需要花费 8 分钟才能阅读完成。

Given the root of a binary tree, return the inorder traversal of its nodes’ values.

Example 1:

Input: root = [1,null,2,3]
Output: [1,3,2]

<!– more –>

Example 2:

Input: root = []
Output: []

Example 3:

Input: root = [1]
Output: [1]

Example 4:

Input: root = [1,2]
Output: [2,1]

Example 5:

Input: root = [1,null,2]
Output: [1,2]

Constraints:

  • The number of nodes in the tree is in the range [0, 100].
  • -100 <= Node.val <= 100

Follow up: Recursive solution is trivial, could you do it iteratively?

Solution

Solution1

应用递归 (Recursion)

java

public class BinaryTreeInorderTraversal{
    // Using recursiuon!
    public List<Integer> inorderTraversal(TreeNode root) {ArrayList<Integer> list = new ArrayList<Integer>();
        if(root==null){return list;}
        helper(list,root);
        return list;
    }
    public void helper(ArrayList<Integer> list, TreeNode node){if(node.left!=null){helper(list,node.left);
        }
        list.add(node.val);
        if(node.right!=null){helper(list,node.right);
        }
    }
}

不说了,递归还是很容易了解的。

Solution2

不应用递归 (Without using recursion)

中序遍历非递归借助栈的实现办法。

c++

/*
 * app:leetcode lang:**c++**
 * https://leetcode.com/problems/binary-tree-inorder-traversal/
 * 4 ms, faster than 43.54 % 
 * Memory Usage: 8.4 MB, less than 63.67 %
 */
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> res;
        if(!root) return res;
        stack<TreeNode*> st;
        TreeNode* node = root;
        while(node || !st.empty()){while(node){st.push(node);
                node = node->left;
            }
            node = st.top();
            st.pop();
            res.push_back(node->val);
            node = node->right;
        }
        return res;
    }
};

javascript

/*
 * app:leetcode lang:**javascript**
 * https://leetcode.com/problems/binary-tree-inorder-traversal/
 * Runtime: 95 ms, faster than 27.10%
 * Memory Usage: 38.8 MB, less than 65.00%
 */
/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {*     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {TreeNode} root
 * @return {number[]}
 */
var inorderTraversal = function(root) {const res = [];
    if(!root) return res;
    const st = [];
    while(root || st.length){while(root){st.push(root);
            root = root.left;
        }
        root = st.pop();
        res.push(root.val);
        root = root.right;
    }
    return res;
};

java

public class BinaryTreeInorderTraversal2{
    // Without using recursion!
    public List<Integer> inorderTraversal(TreeNode root) {ArrayList<Integer> list = new ArrayList<Integer>();
        Stack<TreeNode> stack = new Stack<TreeNode>();
        TreeNode node = root;
        while(node!=null || !stack.empty()){if(node!=null){stack.push(node);
                node = node.left;
            }else{TreeNode p = stack.pop();
                list.add(p.val);
                node = p.right;
            }
        }
        return list;
    }
}

Solution3

最优解

Morris traversal

工夫复杂度:O(n)
空间复杂度:O(1)

java

public class BinaryTreeInorderTraversal{
    // Morris Traversal !
    public List<Integer> inorderTraversal(TreeNode root) {ArrayList<Integer> list = new ArrayList<Integer>();
        TreeNode cur = root;
        while(cur!=null){if(cur.left==null){list.add(cur.val);
                cur = cur.right;
            }else{
                TreeNode pre = cur.left;
                while(pre.right!=null && pre.right!=cur){pre = pre.right;}
                if(pre.right==null){
                    pre.right = cur;
                    cur = cur.left;
                }else{list.add(cur.val);
                    pre.right = null;
                    cur = cur.right;
                }
            }
        }
        return list;
    }
}

总结

递归和非递归的思路应该留神。同时也应该纯熟 Morris Traversal。

正文完
 0