共计 4444 个字符,预计需要花费 12 分钟才能阅读完成。
位运算根底:
程序中所有的数载计算机内存中都是以二进制存储的,位运算就是间接对整数在内存中的二进制进行操作,因为间接在内存中进行操作,不须要转成十进制,因而处理速度十分快
常见位运算
x & 1 === 0 // 判断奇偶
x & (x - 1) // 革除最左边的 1
x & -x // 失去最左边的 1
191. 位 1 的个数(easy)
编写一个函数,输出是一个无符号整数(以二进制串的模式),返回其二进制表达式中数字位数为 ‘1’ 的个数(也被称为汉明分量)。
提醒:
请留神,在某些语言(如 Java)中,没有无符号整数类型。在这种状况下,输出和输入都将被指定为有符号整数类型,并且不应影响您的实现,因为无论整数是有符号的还是无符号的,其外部的二进制示意模式都是雷同的。
在 Java 中,编译器应用二进制补码记法来示意有符号整数。因而,在下面的 示例 3 中,输出示意有符号整数 -3。示例 1:
输出:00000000000000000000000000001011
输入:3
解释:输出的二进制串 00000000000000000000000000001011 中,共有三位为 ‘1’。
示例 2:输出:00000000000000000000000010000000
输入:1
解释:输出的二进制串 00000000000000000000000010000000 中,共有一位为 ‘1’。
示例 3:输出:11111111111111111111111111111101
输入:31
解释:输出的二进制串 11111111111111111111111111111101 中,共有 31 位为 ‘1’。提醒:
输出必须是长度为 32 的 二进制串。
进阶:
如果屡次调用这个函数,你将如何优化你的算法?
办法 1:循环每个二进制位
- 思路:间接循环二进制中的每一位,判断是否为 1,统计 1 的个数
- 复杂度剖析:工夫复杂度
O(k)
,k=32。空间复杂度为O(1)
Js:
var hammingWeight = function(n) {
let ret = 0;
for (let i = 0; i < 32; i++) {if ((n & (1 << i)) !== 0) {// 让 1 一直左移 判断该位是否为 1
ret++;
}
}
return ret;
};
办法 2:优化循环的过程
- 思路:巧用二进制公式
x&(x-1)
示意去掉二进制中最左边的第一个 1,减速循环过程 - 复杂度剖析:工夫复杂度为
O(k)
,k 为二进制中 1 的个数,最坏的状况下所有位都是 1。空间复杂度是O(1)
js:
var hammingWeight = function(n) {
let ret = 0;
while (n) {
n &= n - 1;// 一直消掉最左边的 1
ret++;
}
return ret;
};
268. 失落的数字(easy)
给定一个蕴含 [0, n] 中 n 个数的数组 nums,找出 [0, n] 这个范畴内没有呈现在数组中的那个数。
示例 1:
输出:nums = [3,0,1]
输入:2
解释:n = 3,因为有 3 个数字,所以所有的数字都在范畴 [0,3] 内。2 是失落的数字,因为它没有呈现在 nums 中。
示例 2:输出:nums = [0,1]
输入:2
解释:n = 2,因为有 2 个数字,所以所有的数字都在范畴 [0,2] 内。2 是失落的数字,因为它没有呈现在 nums 中。
示例 3:输出:nums = [9,6,4,2,3,5,7,0,1]
输入:8
解释:n = 9,因为有 9 个数字,所以所有的数字都在范畴 [0,9] 内。8 是失落的数字,因为它没有呈现在 nums 中。
示例 4:输出:nums = [0]
输入:1
解释:n = 1,因为有 1 个数字,所以所有的数字都在范畴 [0,1] 内。1 是失落的数字,因为它没有呈现在 nums 中。提醒:
n == nums.length
1 <= n <= 104
0 <= nums[i] <= n
nums 中的所有数字都 举世无双进阶:你是否实现线性工夫复杂度、仅应用额定常数空间的算法解决此问题?
办法 1. 排序:在循环数组,看后一个数是不是比前一个大 1
办法 2. 哈希表:将数组中的元素插入哈希表,而后循环 0~nums.length- 1 中的数是不是都在哈希表中
办法 3. 求和:0~nums.length- 1 求和减去 nums 中的和
办法 4 : 位运算
- 思路:雷同的数异或为 0
- 复杂度:工夫复杂度
O(n)
,空间复杂度O(1)
js:
//nums = [3,0,1]
//index = 0,1,2
var missingNumber = function (nums) {
let missing = nums.length
for (let i = 0; i < nums.length; i++) {// 雷同的数异或为 0
missing = missing ^ nums[i] ^ (i)
}
return missing
}
231. 2 的幂(easy)
给你一个整数 n,请你判断该整数是否是 2 的幂次方。如果是,返回 true;否则,返回 false。
如果存在一个整数 x 使得 n == 2x,则认为 n 是 2 的幂次方。
示例 1:
输出:n = 1
输入:true
解释:20 = 1
示例 2:输出:n = 16
输入:true
解释:24 = 16
示例 3:输出:n = 3
输入:false
示例 4:输出:n = 4
输入:true
示例 5:输出:n = 5
输入:false提醒:
-231 <= n <= 231 – 1
进阶:你可能不应用循环 / 递归解决此问题吗?
办法 1. 二进制
- 思路:一个数是 2 的幂须要满足这个数的二进制中只有一个 1,也就是须要满足这个数 >0,同时打消惟一的一个 1 之后就是 0
- 复杂度:工夫复杂度
O(1)
。空间复杂度O(1)
Js:
var isPowerOfTwo = function(n) {return n > 0 && (n & (n - 1)) === 0;
};
办法 2. 是否为最大 2 的幂的约数
- 思路:最大的 2 的幂为
2^30 = 1073741824
,判断 n 是否是2^30
的约数即可。 - 复杂度: 工夫复杂度
O(1)
。空间复杂度O(1)
js:
var isPowerOfTwo = function(n) {
const MAX = 1 << 30;
return n > 0 && MAX % n === 0;
};
389. 找不同(easy)
给定两个字符串 s 和 t,它们只蕴含小写字母。
字符串 t 由字符串 s 随机重排,而后在随机地位增加一个字母。
请找出在 t 中被增加的字母。
示例 1:
输出:s = “abcd”, t = “abcde”
输入:”e”
解释:’e’ 是那个被增加的字母。
示例 2:输出:s = “”, t = “y”
输入:”y”提醒:
0 <= s.length <= 1000
t.length == s.length + 1
s 和 t 只蕴含小写字母
办法 1. 计数
- 思路:循环字符串 s 统计每个字符的个数,循环字符串 t 每呈现一次 s 中的字符 就让相应字符的数量缩小 1,如果字符缩小到了小于 0 则这个字符就是答案
- 复杂度:工夫复杂度
O(n)
,n 是字符串的长度。空间复杂度O(k)
,k 是字符集的大小
js:
var findTheDifference = function(s, t) {const cnt = new Array(26).fill(0);
for (const ch of s) {// 循环字符串 s 统计每个字符的个数
cnt[ch.charCodeAt() - 'a'.charCodeAt()]++;
}
for (const ch of t) {// 循环字符串 t 每呈现一次 s 中的字符 就让相应字符的数量缩小 1
cnt[ch.charCodeAt() - 'a'.charCodeAt()]--;
if (cnt[ch.charCodeAt() - 'a'.charCodeAt()] < 0) {// 如果字符缩小到了小于 0 则这个字符就是答案
return ch;
}
}
return ' ';
};
办法 2. 求和
- 思路:统计字符串 s 和 t 中字符 Unicode 的总和,两个和的差 就是不同的字符
- 复杂度:工夫复杂度
O(n)
。空间复杂度O(1)
js:
var findTheDifference = function(s, t) {
let as = 0, at = 0;
for (let i = 0; i < s.length; i++) {// 统计字符串 s 中字符 Unicode 值的总和
as += s[i].charCodeAt();}
for (let i = 0; i < t.length; i++) {// 统计字符串 t 中字符 Unicode 值的总和
at += t[i].charCodeAt();}
return String.fromCharCode(at - as);// 两个和的差 就是不同的字符
};
方 3. 位运算
- 思路:循环 s 和 t 一直异或 雷同元素异或等于 0 所以惟一不同的字符最初会留下来
- 复杂度:工夫复杂度
O(n)
。空间复杂度O(1)
js:
//s = "abcd", t = "abcde"
var findTheDifference = function(s, t) {
let ret = 0;// 循环 s 和 t 一直异或 雷同元素异或等于 0 所以惟一不同的字符最初会留下来
for (const ch of s) {ret ^= ch.charCodeAt();
}
for (const ch of t) {ret ^= ch.charCodeAt();
}
return String.fromCharCode(ret);
};
338. 比特位计数 (easy)
给你一个整数 n,对于 0 <= i <= n 中的每个 i,计算其二进制示意中 1 的个数,返回一个长度为 n + 1 的数组 ans 作为答案。
示例 1:
输出:n = 2
输入:[0,1,1]
解释:
0 –> 0
1 –> 1
2 –> 10
示例 2:输出:n = 5
输入:[0,1,1,2,1,2]
解释:
0 –> 0
1 –> 1
2 –> 10
3 –> 11
4 –> 100
5 –> 101提醒:
0 <= n <= 105
进阶:
很容易就能实现工夫复杂度为 O(n log n) 的解决方案,你能够在线性工夫复杂度 O(n) 内用一趟扫描解决此问题吗?
你能不应用任何内置函数解决此问题吗?(如,C++ 中的 __builtin_popcount)
办法 1. 循环
- 思路:循环
0-n
,计算每个数二进制中 1 的个数。 - 复杂度:工夫复杂度
O(nk)
,k 一个整数统计二进制 1 的复杂度,最坏的状况下是 k =32。空间复杂度是O(1)
js:
var countBits = function(n) {const bits = new Array(n + 1).fill(0);
for (let i = 0; i <= n; i++) {bits[i] = countOnes(i);
}
return bits
};
const countOnes = (x) => {
let ones = 0;
while (x > 0) {x &= (x - 1);
ones++;
}
return ones;
}
办法 2. 动静布局
- 思路:
bits[i]
示意 i 的二进制中 1 的个数,那么bits[i-1]
就是bits[i]
拿掉一个 1 之后的值,i & (i - 1)
就是去掉最低位的一个 1.
所以状态转移方程就是bits[i] = bits[i & (i - 1)] + 1
,一直循环计算出从 1 - n 中每个数二进制中 1 的个数即可
- 复杂度:工夫复杂度
O(n)
。空间复杂度是O(1)
Js:
var countBits = function(n) {const bits = new Array(n + 1).fill(0);
for (let i = 1; i <= n; i++) {bits[i] = bits[i & (i - 1)] + 1;
}
return bits;
};
视频解说:传送门