共计 526 个字符,预计需要花费 2 分钟才能阅读完成。
企业在 Kubernetes 上运行 AI、大数据利用已成支流,资源弹性和开发运维效率失去显著晋升的同时,计算存储拆散架构也带来了挑战:网络提早高、网络费用贵、存储服务带宽有余等。
以 AI 训练、基因计算、工业仿真等高性能计算场景为例,须要在短时间内并发执行海量计算,多计算实例共享拜访文件系统的同一数据源。很多企业应用阿里云文件存储 NAS 或 CPFS 服务,挂载到阿里云容器服务 ACK 运行的计算工作上,实现数千台计算节点的高性能共享拜访。
然而,随着算力规模和性能晋升、以及模型规模和工作负载复杂度的减少,在云原生的机器学习和大数据场景下,高性能计算对并行文件系统的数据拜访性能和灵活性要求也越来越高。
残缺内容请点击下方链接查看:
https://developer.aliyun.com/article/1246768?utm_content=g_10…
版权申明:本文内容由阿里云实名注册用户自发奉献,版权归原作者所有,阿里云开发者社区不领有其著作权,亦不承当相应法律责任。具体规定请查看《阿里云开发者社区用户服务协定》和《阿里云开发者社区知识产权爱护指引》。如果您发现本社区中有涉嫌剽窃的内容,填写侵权投诉表单进行举报,一经查实,本社区将立即删除涉嫌侵权内容。
正文完
发表至: kubernetes
2023-07-04