共计 5376 个字符,预计需要花费 14 分钟才能阅读完成。
应用 Python 绘制一幅业余的 K 线图,是量化投资和金融数据分析的必备功课。
上面我将从 K 线图简介、数据获取、K 线图绘制及成交量绘制等方面,联合源代码,一步步实现业余 K 线图的绘制。
K 线图简介
K 线图又被成为“蜡烛图”、“阴阳线”等,它在视觉效果上能够很清晰得凸显出市场多空局势,K 线图成为大家查看行情数据以及各式量化剖析不可或缺的一环。在 K 线图常见的时间跨度分钟、日、周以及月。
K 线由高开低收四个价格绘制而成。分为阳线与阴线两种,收盘价高于开盘价时为阳线,收盘价低于开盘价时为阴线;K 线图的示意图如下:
K 线由矩形实体与高低两根影线组成,实体上方的影线成为上影线,下方的成为下影线。实体与阴线绝对长短,可造成多种状态。
1、股票数据
咱们从 [恒无数] (https://udata.hs.net/home?cha…) 金融数据社区,获取股票市场历史行情数据。咱们获取 2021 年 6 月 1 号至 2021 年 8 月 1 号,恒生电子(600570.SH)的日行情数据,代码及执行后果如下。
# 加载取数与绘图所需的函数包
import pandas as pd
import datetime
from hs_udata import set_token,stock_quote_daily
from mpl_finance import candlestick_ohlc
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
mpl.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体
mpl.rcParams['axes.unicode_minus'] = False # 解决保留图像是负号 '-' 显示为方块的问题
def GetData(stock_code,start,end):
#stock_code:获取股票数据的股票代码
# start:开始日期
# end:完结日期
date_start=datetime.datetime.strptime(start,'%Y-%m-%d')
date_end =datetime.datetime.strptime(end,'%Y-%m-%d')
data = pd.DataFrame([])
while date_start<date_end:
# 获取日行情数据,接口阐明见 https://udata.hs.net/datas/332/
# adjust_way 枚举值为:0- 不复权,1- 前复权,2- 后复权,此处取前复权
data_i = stock_quote_daily(en_prod_code=stock_code
,trading_date=date_start.strftime('%Y%m%d')
,adjust_way = 1)
data=pd.concat([data,data_i],axis=0) # 将行情数据按行拼接
date_start+=datetime.timedelta(days=1) # 日期变量自增
# 返回行情数据
return data
#1、获取行情数据
stock_code = "600570.SH" # 恒生电子 股票代码是 600570.SH
start='2021-06-01'
end ='2021-08-01'
set_token(token = 'xxxxxxxxxxxxxxxxxxxxxxxx') # 注册后,获取并替换 token
data = GetData(stock_code,start,end)
data
2、数据处理
因为恒无数的 stock_quote_daily 接口返回参数较多,蕴含了非交易日及停牌日期的数据。应用 candlestick_ohlc 包绘制 K 线图时,须要将日期转为数值。程序代码与执行后果如下:
#2、数据处理
data = data.loc[data.turnover_status=='交易'] # 剔除非交易日
data_price = data[['trading_date','open_price','high_price','low_price','close_price'
,'business_amount']] # 选取日期、高开低收价格、成交量数据
data_price.set_index('trading_date', inplace=True) # 将日期作为索引
data_price = data_price.astype(float) # 将价格数据类型转为浮点数
# 将日期格局转为 candlestick_ohlc 可辨认的数值
data_price['Date'] = list(map(lambda x:mdates.date2num(datetime.datetime.strptime(x,'%Y-%m-%d')),data_price.index.tolist()))
data_price
3、绘制 K 线
应用 mpl_finance 函数包中 candlestick_ohlc 函数进行绘图,程序如下:
#3、绘制 K 线图
# 提取绘图数据
ohlc = data_price[['Date','open_price','high_price','low_price','close_price']]
f1, ax = plt.subplots(figsize = (12,6)) # 创立图片
candlestick_ohlc(ax, ohlc.values.tolist(), width=.7
, colorup='red', colordown='green') # 应用 candlestick_ohlc 绘图
ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d')) # 设置横轴日期格局
plt.xticks(rotation=30) # 日期显示的旋转角度
plt.title(stock_code,fontsize = 14) # 设置图片题目
plt.xlabel('日 期',fontsize = 14) # 设置横轴题目
plt.ylabel('价 格(元)',fontsize = 14) # 设置纵轴题目
plt.show()
4、去除图中非交易日
因为 candlestick_ohlc 函数默认绘制的 K 线图并未剔出非交易日(周末、节假日和停牌日期),导致 K 线之间存在空白距离。上面咱们通过批改绘图数据中横轴数据,批改横轴标注日期,实现剔除图中的非交易日数据。
# 4、去除非交易日的距离
ohlc = data_price[['Date','open_price','high_price','low_price','close_price']]
ohlc.loc[:,'Date'] = range(len(ohlc)) # 从新赋值横轴数据,使横轴数据为间断数值
# 绘图
f1, ax = plt.subplots(figsize = (12,6))
candlestick_ohlc(ax, ohlc.values.tolist(), width=.7, colorup='red', colordown='green')
plt.xticks(rotation=30) # 日期显示的旋转角度
plt.title(stock_code,fontsize = 14) # 设置图片题目
plt.xlabel('日 期',fontsize = 14) # 设置横轴题目
plt.ylabel('价 格(元)',fontsize = 14) # 设置纵轴题目
# 批改横轴标注日期
date_list = ohlc.index.tolist() # 获取日期列表
xticks_len = round(len(date_list)/(len(ax.get_xticks())-1)) # 获取默认横轴标注的距离
xticks_num = range(0,len(date_list),xticks_len) # 生成横轴标注地位列表
xticks_str = list(map(lambda x:date_list[int(x)],xticks_num)) # 生成正在标注日期列表
ax.set_xticks(xticks_num) # 设置横轴标注地位
ax.set_xticklabels(xticks_str) # 设置横轴标注日期
plt.show()
5、在 K 线图中,增加成交量
K 线图中,除了 K 线数据,个别还配有成交量数据。恒无数的 stock_quote_daily 接口返回的数据中,也有成交量数据。将 K 线图与成交量绘制在同一张图的程序如下:
#5、绘制成交量
fig = plt.figure(figsize=(12,10))
grid = plt.GridSpec(12, 10, wspace=0.5, hspace=0.5)
#(1)绘制 K 线图
# K 线数据
ohlc = data_price[['Date','open_price','high_price','low_price','close_price']]
ohlc.loc[:,'Date'] = range(len(ohlc)) # 从新赋值横轴数据,绘制 K 线图无距离
# 绘制 K 线
ax1 = fig.add_subplot(grid[0:8,0:12]) # 设置 K 线图的尺寸
candlestick_ohlc(ax1, ohlc.values.tolist(), width=.7
, colorup='red', colordown='green')
plt.title(stock_code,fontsize = 14) # 设置图片题目
plt.ylabel('价 格(元)',fontsize = 14) # 设置纵轴题目
ax1.set_xticks([]) # 日期标注在成交量中,故清空此处 x 轴刻度
ax1.set_xticklabels([]) # 日期标注在成交量中,故清空此处 x 轴
#(2)绘制成交量
# 成交量数据
data_volume = data_price[['Date','close_price','open_price','business_amount']]
data_volume['color'] = data_volume.apply(lambda row: 1 if row['close_price'] >= row['open_price'] else 0, axis=1) # 计算成交量柱状图对应的色彩,使之与 K 线色彩统一
data_volume.Date = ohlc.Date
# 绘制成交量
ax2 = fig.add_subplot(grid[8:10,0:12]) # 设置成交量图形尺寸
ax2.bar(data_volume.query('color==1')['Date']
, data_volume.query('color==1')['business_amount']
, color='r') # 绘制红色柱状图
ax2.bar(data_volume.query('color==0')['Date']
, data_volume.query('color==0')['business_amount']
, color='g') # 绘制绿色柱状图
plt.xticks(rotation=30)
plt.xlabel('日 期',fontsize = 14) # 设置横轴题目
# 批改横轴日期标注
date_list = ohlc.index.tolist() # 获取日期列表
xticks_len = round(len(date_list)/(len(ax2.get_xticks())-1)) # 获取默认横轴标注的距离
xticks_num = range(0,len(date_list),xticks_len) # 生成横轴标注地位列表
xticks_str = list(map(lambda x:date_list[int(x)],xticks_num)) # 生成正在标注日期列表
ax2.set_xticks(xticks_num) # 设置横轴标注地位
ax2.set_xticklabels(xticks_str) # 设置横轴标注日期
plt.show()
至此一幅业余的 K 线图便绘制结束了。
下篇文章,咱们将在图中增加均线及常见技术指标走势图,敬请期待。