共计 9867 个字符,预计需要花费 25 分钟才能阅读完成。
ResNet50 卷积神经网络简介
ResNet-50 非凡层详解
再来看看代码层面的
import torchvision.models as models | |
import torch.nn as nn | |
from loguru import logger | |
resnet50_model = models.resnet50() | |
features = list(resnet50_model.children()) | |
for index, layer in enumerate(list(resnet50_model.children())): | |
logger.debug(f'第 {index} 层(从 0 开始算)') | |
print(layer) |
输入
2023-03-14 15:55:07.713 | DEBUG | __main__:<module>:11 - 第 0 层(从 0 开始算)Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) | |
2023-03-14 15:55:07.713 | DEBUG | __main__:<module>:11 - 第 1 层(从 0 开始算)BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
2023-03-14 15:55:07.713 | DEBUG | __main__:<module>:11 - 第 2 层(从 0 开始算)ReLU(inplace=True) | |
2023-03-14 15:55:07.713 | DEBUG | __main__:<module>:11 - 第 3 层(从 0 开始算)MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) | |
2023-03-14 15:55:07.713 | DEBUG | __main__:<module>:11 - 第 4 层(从 0 开始算)Sequential((0): Bottleneck((conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) | |
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(relu): ReLU(inplace=True) | |
(downsample): Sequential((0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
) | |
) | |
(1): Bottleneck((conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) | |
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(relu): ReLU(inplace=True) | |
) | |
(2): Bottleneck((conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) | |
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(relu): ReLU(inplace=True) | |
) | |
) | |
2023-03-14 15:55:07.714 | DEBUG | __main__:<module>:11 - 第 5 层(从 0 开始算)Sequential((0): Bottleneck((conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) | |
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(relu): ReLU(inplace=True) | |
(downsample): Sequential((0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False) | |
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
) | |
) | |
(1): Bottleneck((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) | |
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(relu): ReLU(inplace=True) | |
) | |
(2): Bottleneck((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) | |
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(relu): ReLU(inplace=True) | |
) | |
(3): Bottleneck((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) | |
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(relu): ReLU(inplace=True) | |
) | |
) | |
2023-03-14 15:55:07.714 | DEBUG | __main__:<module>:11 - 第 6 层(从 0 开始算)Sequential((0): Bottleneck((conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) | |
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(relu): ReLU(inplace=True) | |
(downsample): Sequential((0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False) | |
(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
) | |
) | |
(1): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) | |
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(relu): ReLU(inplace=True) | |
) | |
(2): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) | |
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(relu): ReLU(inplace=True) | |
) | |
(3): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) | |
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(relu): ReLU(inplace=True) | |
) | |
(4): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) | |
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(relu): ReLU(inplace=True) | |
) | |
(5): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) | |
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(relu): ReLU(inplace=True) | |
) | |
) | |
2023-03-14 15:55:07.714 | DEBUG | __main__:<module>:11 - 第 7 层(从 0 开始算)Sequential((0): Bottleneck((conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) | |
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(relu): ReLU(inplace=True) | |
(downsample): Sequential((0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False) | |
(1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
) | |
) | |
(1): Bottleneck((conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) | |
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(relu): ReLU(inplace=True) | |
) | |
(2): Bottleneck((conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) | |
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
(relu): ReLU(inplace=True) | |
) | |
) | |
2023-03-14 15:55:07.715 | DEBUG | __main__:<module>:11 - 第 8 层(从 0 开始算)AdaptiveAvgPool2d(output_size=(1, 1)) | |
2023-03-14 15:55:07.715 | DEBUG | __main__:<module>:11 - 第 9 层(从 0 开始算)Linear(in_features=2048, out_features=1000, bias=True) |
正文完