关于机器学习:MindSporeYOLOv3人体目标检测模型实现二

41次阅读

共计 9761 个字符,预计需要花费 25 分钟才能阅读完成。

3.2 YOLOv3 为了节俭篇幅,这一节只挑局部贴代码,更多的代码和包的导入请参考 附件 \model\yolo.py。(参考:https://gitee.com/mindspore/m…)class YoloBlock 是 Darknet53 输入后的解决模块,包含 YOLOv3 结构图(参见 YOLOv3 人体指标检测模型实现(一))中的 Convolutional Set 以及前面的卷积:class YoloBlock(nn.Cell):

"""
YoloBlock for YOLOv3.

Args:
    in_channels: Integer. Input channel.
    out_chls: Integer. Middle channel.
    out_channels: Integer. Output channel.

Returns:
    Tuple, tuple of output tensor,(f1,f2,f3).

Examples:
    YoloBlock(1024, 512, 255)

"""
def __init__(self, in_channels, out_chls, out_channels):
    super(YoloBlock, self).__init__()
    out_chls_2 = out_chls*2

    self.conv0 = _conv_bn_relu(in_channels, out_chls, ksize=1)
    self.conv1 = _conv_bn_relu(out_chls, out_chls_2, ksize=3)

    self.conv2 = _conv_bn_relu(out_chls_2, out_chls, ksize=1)
    self.conv3 = _conv_bn_relu(out_chls, out_chls_2, ksize=3)

    self.conv4 = _conv_bn_relu(out_chls_2, out_chls, ksize=1)
    self.conv5 = _conv_bn_relu(out_chls, out_chls_2, ksize=3)

    self.conv6 = nn.Conv2d(out_chls_2, out_channels, kernel_size=1, stride=1, has_bias=True)

def construct(self, x):
    c1 = self.conv0(x)
    c2 = self.conv1(c1)

    c3 = self.conv2(c2)
    c4 = self.conv3(c3)

    c5 = self.conv4(c4)
    c6 = self.conv5(c5)

    out = self.conv6(c6)
    return c5, outclass YOLOv3 则将骨干网络和 YoloBlock 组合起来(蕴含上采样)成为结构图中残缺的 YOLOv3 模型:class YOLOv3(nn.Cell):
"""
 YOLOv3 Network.

 Note:
     backbone = darknet53

 Args:
     backbone_shape: List. Darknet output channels shape.
     backbone: Cell. Backbone Network.
     out_channel: Integer. Output channel.

 Returns:
     Tensor, output tensor.

 Examples:
     YOLOv3(backbone_shape=[64, 128, 256, 512, 1024]
            backbone=darknet53(),
            out_channel=255)
 """
def __init__(self, backbone_shape, backbone, out_channel):
    super(YOLOv3, self).__init__()
    self.out_channel = out_channel
    self.backbone = backbone
    self.backblock0 = YoloBlock(backbone_shape[-1], out_chls=backbone_shape[-2], out_channels=out_channel)

    self.conv1 = _conv_bn_relu(in_channel=backbone_shape[-2], out_channel=backbone_shape[-2]//2, ksize=1)
    self.backblock1 = YoloBlock(in_channels=backbone_shape[-2]+backbone_shape[-3],
                                out_chls=backbone_shape[-3],
                                out_channels=out_channel)

    self.conv2 = _conv_bn_relu(in_channel=backbone_shape[-3], out_channel=backbone_shape[-3]//2, ksize=1)
    self.backblock2 = YoloBlock(in_channels=backbone_shape[-3]+backbone_shape[-4],
                                out_chls=backbone_shape[-4],
                                out_channels=out_channel)
    self.concat = P.Concat(axis=1)

def construct(self, x):
    # input_shape of x is (batch_size, 3, h, w)
    # feature_map1 is (batch_size, backbone_shape[2], h/8, w/8)
    # feature_map2 is (batch_size, backbone_shape[3], h/16, w/16)
    # feature_map3 is (batch_size, backbone_shape[4], h/32, w/32)
    img_hight = P.Shape()(x)[2]
    img_width = P.Shape()(x)[3]
    feature_map1, feature_map2, feature_map3 = self.backbone(x)
    con1, big_object_output = self.backblock0(feature_map3)

    con1 = self.conv1(con1)
    ups1 = P.ResizeNearestNeighbor((img_hight // 16, img_width // 16))(con1)
    con1 = self.concat((ups1, feature_map2))
    con2, medium_object_output = self.backblock1(con1)

    con2 = self.conv2(con2)
    ups2 = P.ResizeNearestNeighbor((img_hight // 8, img_width // 8))(con2)
    con3 = self.concat((ups2, feature_map1))
    _, small_object_output = self.backblock2(con3)

    return big_object_output, medium_object_output, small_object_outputclass DetectionBlock 负责对 YOLOv3 的输入下图中的计算:

class DetectionBlock(nn.Cell):

"""
 YOLOv3 detection Network. It will finally output the detection result.

 Args:
     scale: Character.
     config: Configuration.
     is_training: Bool, Whether train or not, default True.

 Returns:
     Tuple, tuple of output tensor,(f1,f2,f3).

 Examples:
     DetectionBlock(scale='l',stride=32,config=config)
 """

def __init__(self, scale, config=None, is_training=True):
    super(DetectionBlock, self).__init__()
    self.config = config
    if scale == 's':
        idx = (0, 1, 2)
    elif scale == 'm':
        idx = (3, 4, 5)
    elif scale == 'l':
        idx = (6, 7, 8)
    else:
        raise KeyError("Invalid scale value for DetectionBlock")
    self.anchors = Tensor([self.config.anchor_scales for i in idx], ms.float32)
    self.num_anchors_per_scale = 3
    self.num_attrib = 4+1+self.config.num_classes
    self.lambda_coord = 1

    self.sigmoid = nn.Sigmoid()
    self.reshape = P.Reshape()
    self.tile = P.Tile()
    self.concat = P.Concat(axis=-1)
    self.conf_training = is_training

def construct(self, x, input_shape):
    num_batch = P.Shape()(x)[0]
    grid_size = P.Shape()(x)[2:4]

    # Reshape and transpose the feature to [n, grid_size[0], grid_size[1], 3, num_attrib]
    prediction = P.Reshape()(x, (num_batch,
                                 self.num_anchors_per_scale,
                                 self.num_attrib,
                                 grid_size[0],
                                 grid_size[1]))
    prediction = P.Transpose()(prediction, (0, 3, 4, 1, 2))

    range_x = range(grid_size[1])
    range_y = range(grid_size[0])
    grid_x = P.Cast()(F.tuple_to_array(range_x), ms.float32)
    grid_y = P.Cast()(F.tuple_to_array(range_y), ms.float32)
    # Tensor of shape [grid_size[0], grid_size[1], 1, 1] representing the coordinate of x/y axis for each grid
    # [batch, gridx, gridy, 1, 1]
    grid_x = self.tile(self.reshape(grid_x, (1, 1, -1, 1, 1)), (1, grid_size[0], 1, 1, 1))
    grid_y = self.tile(self.reshape(grid_y, (1, -1, 1, 1, 1)), (1, 1, grid_size[1], 1, 1))
    # Shape is [grid_size[0], grid_size[1], 1, 2]
    grid = self.concat((grid_x, grid_y))

    box_xy = prediction[:, :, :, :, :2]
    box_wh = prediction[:, :, :, :, 2:4]
    box_confidence = prediction[:, :, :, :, 4:5]
    box_probs = prediction[:, :, :, :, 5:]

    # gridsize1 is x
    # gridsize0 is y
    box_xy = (self.sigmoid(box_xy) + grid) / P.Cast()(F.tuple_to_array((grid_size[1], grid_size[0])), ms.float32)
    # box_wh is w->h
    box_wh = P.Exp()(box_wh) * self.anchors / input_shape
    box_confidence = self.sigmoid(box_confidence)
    box_probs = self.sigmoid(box_probs)

    if self.conf_training:
        return grid, prediction, box_xy, box_wh
    return self.concat((box_xy, box_wh, box_confidence, box_probs))class YoloLossBlock 用于计算模型推理失去的 3 个输入特色图的损失:class YoloLossBlock(nn.Cell):
"""Loss block cell of YOLOV3 network."""
def __init__(self, scale, config=None):
    super(YoloLossBlock, self).__init__()
    self.config = config
    if scale == 's':
        # anchor mask
        idx = (0, 1, 2)
    elif scale == 'm':
        idx = (3, 4, 5)
    elif scale == 'l':
        idx = (6, 7, 8)
    else:
        raise KeyError("Invalid scale value for DetectionBlock")
    self.anchors = Tensor([self.config.anchor_scales for i in idx], ms.float32)
    self.ignore_threshold = Tensor(self.config.ignore_threshold, ms.float32)
    self.concat = P.Concat(axis=-1)
    self.iou = Iou()
    self.reduce_max = P.ReduceMax(keep_dims=False)
    self.xy_loss = XYLoss()
    self.wh_loss = WHLoss()
    self.confidenceLoss = ConfidenceLoss()
    self.classLoss = ClassLoss()

def construct(self, grid, prediction, pred_xy, pred_wh, y_true, gt_box, input_shape):
    # prediction : origin output from yolo
    # pred_xy: (sigmoid(xy)+grid)/grid_size
    # pred_wh: (exp(wh)*anchors)/input_shape
    # y_true : after normalize
    # gt_box: [batch, maxboxes, xyhw] after normalize

    object_mask = y_true[:, :, :, :, 4:5]
    class_probs = y_true[:, :, :, :, 5:]

    grid_shape = P.Shape()(prediction)[1:3]
    grid_shape = P.Cast()(F.tuple_to_array(grid_shape[::-1]), ms.float32)

    pred_boxes = self.concat((pred_xy, pred_wh))
    true_xy = y_true[:, :, :, :, :2] * grid_shape - grid
    true_wh = y_true[:, :, :, :, 2:4]
    true_wh = P.Select()(P.Equal()(true_wh, 0.0),
                         P.Fill()(P.DType()(true_wh),
                                  P.Shape()(true_wh), 1.0),
                         true_wh)
    true_wh = P.Log()(true_wh / self.anchors * input_shape)
    # 2-w*h for large picture, use small scale, since small obj need more precise
    box_loss_scale = 2 - y_true[:, :, :, :, 2:3] * y_true[:, :, :, :, 3:4]

    gt_shape = P.Shape()(gt_box)
    gt_box = P.Reshape()(gt_box, (gt_shape[0], 1, 1, 1, gt_shape[1], gt_shape[2]))

    # add one more dimension for broadcast
    iou = self.iou(P.ExpandDims()(pred_boxes, -2), gt_box)
    # gt_box is x,y,h,w after normalize
    # [batch, grid[0], grid[1], num_anchor, num_gt]
    best_iou = self.reduce_max(iou, -1)
    # [batch, grid[0], grid[1], num_anchor]

    # ignore_mask IOU too small
    ignore_mask = best_iou < self.ignore_threshold
    ignore_mask = P.Cast()(ignore_mask, ms.float32)
    ignore_mask = P.ExpandDims()(ignore_mask, -1)
    # ignore_mask backpro will cause a lot maximunGrad and minimumGrad time consume.
    # so we turn off its gradient
    ignore_mask = F.stop_gradient(ignore_mask)

    xy_loss = self.xy_loss(object_mask, box_loss_scale, prediction[:, :, :, :, :2], true_xy)
    wh_loss = self.wh_loss(object_mask, box_loss_scale, prediction[:, :, :, :, 2:4], true_wh)
    confidence_loss = self.confidenceLoss(object_mask, prediction[:, :, :, :, 4:5], ignore_mask)
    class_loss = self.classLoss(object_mask, prediction[:, :, :, :, 5:], class_probs)
    loss = xy_loss + wh_loss + confidence_loss + class_loss
    batch_size = P.Shape()(prediction)[0]
    return loss / batch_size 损失函数的实现可见 附件 \model\loss.py。最初,class YOLOV3DarkNet53 将后面的 class 组装在一起:class YOLOV3DarkNet53(nn.Cell):
"""
Darknet based YOLOV3 network.

Args:
    is_training: Bool. Whether train or not.

Returns:
    Cell, cell instance of Darknet based YOLOV3 neural network.

Examples:
    YOLOV3DarkNet53(True)
"""

def __init__(self, is_training, config=None):
    super(YOLOV3DarkNet53, self).__init__()
    self.config = config
    self.keep_detect = self.config.keep_detect
    self.tenser_to_array = P.TupleToArray()

    # YOLOv3 network
    self.feature_map = YOLOv3(backbone=DarkNet(ResidualBlock, [1, 2, 8, 8, 4],
                                               [32, 64, 128, 256, 512],
                                               [64, 128, 256, 512, 1024],
                                               detect=True),
                              backbone_shape=[64, 128, 256, 512, 1024],
                              out_channel=self.config.out_channel)

    # prediction on the default anchor boxes
    self.detect_1 = DetectionBlock('l', is_training=is_training, config=self.config)
    self.detect_2 = DetectionBlock('m', is_training=is_training, config=self.config)
    self.detect_3 = DetectionBlock('s', is_training=is_training, config=self.config)

def construct(self, x):
    input_shape = F.shape(x)[2:4]
    input_shape = F.cast(self.tenser_to_array(input_shape), ms.float32)
    big_object_output, medium_object_output, small_object_output = self.feature_map(x)
    if not self.keep_detect:
        return big_object_output, medium_object_output, small_object_output
    output_big = self.detect_1(big_object_output, input_shape)
    output_me = self.detect_2(medium_object_output, input_shape)
    output_small = self.detect_3(small_object_output, input_shape)
    # big is the final output which has smallest feature map
    return output_big, output_me, output_small 将 loss 的计算和网络组装在一起:class YoloWithLossCell(nn.Cell):
"""YOLOV3 loss."""
def __init__(self, network, config=None):
    super(YoloWithLossCell, self).__init__()
    self.yolo_network = network
    self.config = config
    self.tenser_to_array = P.TupleToArray()
    self.loss_big = YoloLossBlock('l', self.config)
    self.loss_me = YoloLossBlock('m', self.config)
    self.loss_small = YoloLossBlock('s', self.config)

def construct(self, x, y_true_0, y_true_1, y_true_2, gt_0, gt_1, gt_2):
    input_shape = F.shape(x)[2:4]
    input_shape = F.cast(self.tenser_to_array(input_shape), ms.float32)
    yolo_out = self.yolo_network(x)
    loss_l = self.loss_big(*yolo_out[0], y_true_0, gt_0, input_shape)
    loss_m = self.loss_me(*yolo_out[1], y_true_1, gt_1, input_shape)
    loss_s = self.loss_small(*yolo_out[2], y_true_2, gt_2, input_shape)
    return loss_l + loss_m + loss_s(未完,请见下一篇 YOLOv3 人体指标检测模型实现(三))

正文完
 0