容器的性能扩大和refresh办法解析
在之前文章中咱们理解了对于Spring中bean的加载流程,并始终应用BeanFactory接口以及它的默认实现类XmlBeanFactory,在Spring中还提供了另一个接口ApplicationContext,用于扩大BeanFactory中现有的性能。
首先BeanFactory和ApplicationContext都是用于加载bean的,然而相比之下,ApplicationContext提供了更多的扩大性能,ApplicationContext蕴含了BeanFactory的所有性能。通常咱们会优先应用ApplicationContext。
咱们来看看ApplicationContext多了哪些性能?
首先看一下写法上的不同。
应用BeanFactory形式加载XML
final BeanFactory beanFactory = new XmlBeanFactory(new ClassPathResource("spring-config.xml"));
应用ApplicationContext形式加载XML
final ApplicationContext applicationContext = new ClassPathXmlApplicationContext("spring-config.xml");
咱们开始点开ClassPathXmlApplicationContext的构造函数,进行剖析。
public ClassPathXmlApplicationContext(String configLocation) throws BeansException {
this(new String[] {configLocation}, true, null);
}
public ClassPathXmlApplicationContext(
String[] configLocations, boolean refresh, @Nullable ApplicationContext parent)
throws BeansException {
super(parent);
setConfigLocations(configLocations);
if (refresh) {
refresh();
}
}
在ClassPathXmlApplicationContext中能够将配置文件门路以数组的模式传入,对解析及性能实现都在refresh()
办法中实现。
设置配置门路
public void setConfigLocations(@Nullable String... locations) {
if (locations != null) {
Assert.noNullElements(locations, "Config locations must not be null");
this.configLocations = new String[locations.length];
for (int i = 0; i < locations.length; i++) {
this.configLocations[i] = resolvePath(locations[i]).trim();
}
}
else {
this.configLocations = null;
}
}
此函数次要解析给定的门路数组,如果数组中蕴含特殊符号,如${var},那么在resolvePath办法中会搜查匹配的零碎变量并替换。
扩大性能
设置完门路后,就能够对文件进行解析和各种性能的实现,能够说在refresh办法中简直蕴含了ApplicationContext中提供的全副性能,而且此函数的逻辑也非常清晰,能够很容易剖析对应档次和逻辑。
public void refresh() throws BeansException, IllegalStateException {
synchronized (this.startupShutdownMonitor) {
// 筹备刷新的上下文环境,包含设置启动工夫,是否激活标识位
// 初始化属性源(property source)配置
prepareRefresh();
// 初始化BeanFactory 并进行xml文件读取
ConfigurableListableBeanFactory beanFactory = obtainFreshBeanFactory();
// 对BeanFactory进行各种性能填充
prepareBeanFactory(beanFactory);
try {
// 子类笼罩办法做额定的解决
postProcessBeanFactory(beanFactory);
// 激活各种BeanFactory处理器
invokeBeanFactoryPostProcessors(beanFactory);
// 注册拦挡bean创立的bean处理器,只是注册,具体调用在getBean中
registerBeanPostProcessors(beanFactory);
// 为上下文初始化Message源,国际化解决
initMessageSource();
// 初始化利用音讯播送器,并放入applicationEventMulticaster bean中
initApplicationEventMulticaster();
// 留给子类来初始化其余的bean
onRefresh();
// 在所有注册的bean中查找Listener bean,注册到音讯播送器中
registerListeners();
// 初始化剩下的单例bean (非惰性)
finishBeanFactoryInitialization(beanFactory);
//实现刷新过程,告诉生命周期处理器LifecycleProcessor刷新过程,同时收回ContextRefreshEvent告诉他人
finishRefresh();
}
catch (BeansException ex) {
if (logger.isWarnEnabled()) {
logger.warn("Exception encountered during context initialization - " +
"cancelling refresh attempt: " + ex);
}
// 销毁曾经初始化的 singleton 的 Beans,免得有些 bean 会始终占用资源
destroyBeans();
// 重置流动标记
cancelRefresh(ex);
throw ex;
}
finally {
//重置公共缓存
resetCommonCaches();
}
}
}
咱们总结一下初始化的步骤。
- 初始化前的筹备工作,例如对系统属性或者环境变量进行筹备及验证
- 初始化BeanFactory,并对XML文件进行读取。之前咱们说过ClassPathXmlApplicationContext中蕴含着BeanFactory所提供的所有特色,那么在这一步将会复用BeanFactory中的配置文件读取解析及其他性能,在这一步之后ClassPathXmlApplicationContext就曾经蕴含了BeanFactory所提供的性能,也就是能够对bean进行提取等操作
- 对BeanFactory进行各种性能填充
- 子类笼罩办法做额定的解决。次要用于咱们在业务上做进一步扩大
- 激活各种BeanFactory处理器
- 注册拦挡bean创立的bena处理器,这里仅仅是注册,真正调用在getBean中
- 为上下文初始化Message源,对不同语言的音讯体进行国际化解决
- 初始化利用音讯播送器,并放入”applicationEventMulticaster” bean中
- 留给子类来初始化其余的bean
- 在所有注册的bean中查找listener bean,注册到音讯播送器中
- 初始化剩下的单实例(非惰性)
- 实现刷新过程,告诉生命周期处理器lifecycleProcessor刷新过程,同时收回ContextRefreshEvent来告诉他人
环境筹备
prepareRefresh办法次要做些筹备工作,比方对系统属性及环境变量的初始化及验证。
initPropertySources
该办法外面是一个空实现,次要用于给咱们依据须要去重写该办法,并在办法中进行个性化的属性解决及设置。
protected void initPropertySources() {
// For subclasses: do nothing by default.
}
validateRequiredProperties
该办法次要对属性进行验证。默认状况下什么也没校验。在咱们继承了ClassPathXmlApplicationContext类重写了initPropertySources办法后会进行相干校验。
加载BeanFactory
obtainFreshBeanFactory 办法次要用来获取BeanFactory,方才说过ApplicationContext领有BeanFactory的所有性能,这个办法就是实现BeanFactory的中央,也就是说调用完该办法后,applicationContext就领有了BeanFactory的性能。
protected ConfigurableListableBeanFactory obtainFreshBeanFactory() {
//初始化BeanFactory,并进行XML文件读取,将失去的BeanFactory记录到以后实体属性中
refreshBeanFactory();
//返回以后实体的beanFactory属性
return getBeanFactory();
}
protected final void refreshBeanFactory() throws BeansException {
if (hasBeanFactory()) {
destroyBeans();
closeBeanFactory();
}
try {
DefaultListableBeanFactory beanFactory = createBeanFactory();
beanFactory.setSerializationId(getId());
customizeBeanFactory(beanFactory);
loadBeanDefinitions(beanFactory);
synchronized (this.beanFactoryMonitor) {
this.beanFactory = beanFactory;
}
}
catch (IOException ex) {
throw new ApplicationContextException("I/O error parsing bean definition source for " + getDisplayName(), ex);
}
}
咱们进入AbstractRefreshableApplicationContext#refreshBeanFactory()
办法中。
protected final void refreshBeanFactory() throws BeansException {
//判断是否存在beanFactory
if (hasBeanFactory()) {
//销毁所有单例
destroyBeans();
//重置beanFactory
closeBeanFactory();
}
try {
//创立beanFactory
DefaultListableBeanFactory beanFactory = createBeanFactory();
//设置序列化id
beanFactory.setSerializationId(getId());
//定制beanFactory,设置相干属性,包含是否容许笼罩同名称不同定义的对象以及循环依赖
customizeBeanFactory(beanFactory);
//初始化DocumentReader,进行XML读取和解析
loadBeanDefinitions(beanFactory);
synchronized (this.beanFactoryMonitor) {
this.beanFactory = beanFactory;
}
}
catch (IOException ex) {
throw new ApplicationContextException("I/O error parsing bean definition source for " + getDisplayName(), ex);
}
}
总结一下这个办法的流程:
- 创立DefaultListableBeanFactory。申明形式为:
BeanFactory bf = new XmlBeanFactory("beanFactoryTest.xml")
,其中的XmlBeanFactory继承自DefaultListableBeanFactory,并提供了XmlBeanDefinitionReader类型的reader属性,也就是说DefaultListableBeanFactory是容器的根底,必须首先实例化,这里就是实例化DefaultListableBeanFactory的步骤 - 指定序列化ID
- 定制BeanFactory
- 加载BeanDefinition
- 应用全局变量记录BeanFactory类实例
定制BeanFactory
首先咱们先理解customizeBeanFactory办法,该办法是在根本容器的根底上,减少了是否容许笼罩、是否容许扩大的设置。
protected void customizeBeanFactory(DefaultListableBeanFactory beanFactory) {
//如果不为空,设置beanFactory对象响应的属性,含意:是否容许笼罩同名称的不同定义的对象
if (this.allowBeanDefinitionOverriding != null) {
beanFactory.setAllowBeanDefinitionOverriding(this.allowBeanDefinitionOverriding);
}
//如果属性不为空,设置给beanFactory对象相应属性,含意:是否容许bean之间存在循环依赖
if (this.allowCircularReferences != null) {
beanFactory.setAllowCircularReferences(this.allowCircularReferences);
}
}
具体这里只是做了简略的判断,具体设置属性的中央,应用子类笼罩即可。例如:
/**
* @author 神秘杰克
* 公众号: Java菜鸟程序员
* @date 2022/6/12
* @Description 自定义ClassPathXmlApplicationContext
*/
public class MyClassPathXmlApplicationContext extends ClassPathXmlApplicationContext {
@Override
protected void customizeBeanFactory(DefaultListableBeanFactory beanFactory) {
super.setAllowBeanDefinitionOverriding(false);
super.setAllowCircularReferences(false);
super.customizeBeanFactory(beanFactory);
}
}
加载BeanDefinition
在初始化了DefaultListableBeanFactory后,咱们还须要XmlBeanDefinitionReader来读取XML文件,这个步骤中首先要做的就是初始化XmlBeanDefinitionReader。
protected void loadBeanDefinitions(DefaultListableBeanFactory beanFactory) throws BeansException, IOException {
//为指定beanFactory创立XmlBeanDefinitionReader
XmlBeanDefinitionReader beanDefinitionReader = new XmlBeanDefinitionReader(beanFactory);
//进行环境变量的设置
beanDefinitionReader.setEnvironment(this.getEnvironment());
beanDefinitionReader.setResourceLoader(this);
beanDefinitionReader.setEntityResolver(new ResourceEntityResolver(this));
//对beanDefinitionReader进行设置,能够笼罩
initBeanDefinitionReader(beanDefinitionReader);
loadBeanDefinitions(beanDefinitionReader);
}
初始化了DefaultListableBeanFactory和XmlBeanDefinitionReader后,咱们就能够进行配置文件的读取了。最终XmlBeanDefinitionReader所去读的BeanDefinitionHolder都会注册到DefaultListableBeanFactory中。
通过该办法后类型为DefaultListableBeanFactory中的变量beanFactory曾经蕴含了所有解析好的配置。对于配置文件的读取这一部分之前文章曾经讲过,这里就不再赘述。
性能扩大
咱们在实现了配置文件解析后,咱们接着进入prepareBeanFactory办法。
protected void prepareBeanFactory(ConfigurableListableBeanFactory beanFactory) {
//设置beanFactory的ClassLoader为以后context的ClassLoader
beanFactory.setBeanClassLoader(getClassLoader());
//设置beanFactory的表达式语言解决
beanFactory.setBeanExpressionResolver(new StandardBeanExpressionResolver(beanFactory.getBeanClassLoader()));
//为beanFactory减少了一个默认的propertyEditor,次要是对bean的属性等设置治理的一个工具
beanFactory.addPropertyEditorRegistrar(new ResourceEditorRegistrar(this, getEnvironment()));
//增加BeanPostProcessor
beanFactory.addBeanPostProcessor(new ApplicationContextAwareProcessor(this));
//设置几个疏忽主动拆卸的接口
beanFactory.ignoreDependencyInterface(EnvironmentAware.class);
beanFactory.ignoreDependencyInterface(EmbeddedValueResolverAware.class);
beanFactory.ignoreDependencyInterface(ResourceLoaderAware.class);
beanFactory.ignoreDependencyInterface(ApplicationEventPublisherAware.class);
beanFactory.ignoreDependencyInterface(MessageSourceAware.class);
beanFactory.ignoreDependencyInterface(ApplicationContextAware.class);
//设置了几个主动拆卸的非凡规定
beanFactory.registerResolvableDependency(BeanFactory.class, beanFactory);
beanFactory.registerResolvableDependency(ResourceLoader.class, this);
beanFactory.registerResolvableDependency(ApplicationEventPublisher.class, this);
beanFactory.registerResolvableDependency(ApplicationContext.class, this);
//减少了ApplicationListenerDetector次要是检测bean是否实现了ApplicationListener接口
beanFactory.addBeanPostProcessor(new ApplicationListenerDetector(this));
//减少对AspectJ的反对
if (beanFactory.containsBean(LOAD_TIME_WEAVER_BEAN_NAME)) {
beanFactory.addBeanPostProcessor(new LoadTimeWeaverAwareProcessor(beanFactory));
// Set a temporary ClassLoader for type matching.
beanFactory.setTempClassLoader(new ContextTypeMatchClassLoader(beanFactory.getBeanClassLoader()));
}
//增加默认的零碎环境bean
if (!beanFactory.containsLocalBean(ENVIRONMENT_BEAN_NAME)) {
beanFactory.registerSingleton(ENVIRONMENT_BEAN_NAME, getEnvironment());
}
if (!beanFactory.containsLocalBean(SYSTEM_PROPERTIES_BEAN_NAME)) {
beanFactory.registerSingleton(SYSTEM_PROPERTIES_BEAN_NAME, getEnvironment().getSystemProperties());
}
if (!beanFactory.containsLocalBean(SYSTEM_ENVIRONMENT_BEAN_NAME)) {
beanFactory.registerSingleton(SYSTEM_ENVIRONMENT_BEAN_NAME, getEnvironment().getSystemEnvironment());
}
}
该办法次要做了几个方面的扩大:
- 减少了对SpEL语言的反对
- 减少了对属性编辑器的反对
- 减少了一些内置类,比方EnvironmentAware、MessageSourceAware的信息注入
- 设置了依赖性能可疏忽的接口
- 注册了一些固定依赖的属性
- 减少AspectJ的反对
- 将相干环境变量及属性注册以单例模式注册
BeanFactory的后处理
BeanFactory作为Spring中容器的根底,用于寄存所有曾经加载的bean,为了保障程序的高扩展性,Spring针对BeanFactory做了大量的扩大,比方PostProcessor等都是在这里实现的。
激活注册的BeanFactoryPostProcessor
在学习之前,咱们先理解一下BeanFactoryPostProcessor的用法。BeanFactoryPostProcessor接口和BeanPostProcessor相似,能够对bean的定义进行解决。也就是说,Spring IOC容器容许BeanFactoryPostProcessor在容器实例化任何bean之前读取配置元数据,并能够批改它。BeanFactoryPostProcessor能够配置多个,通过实现Ordered接口设置“order”来管制执行程序。
须要留神的是如果在容器中定义一个BeanFactoryPostProcessor,它仅仅对此容器中的bean进行后置解决。BeanFactoryPostProcessor不会对其余容器中的bean进行后置解决。
1.BeanFactoryPostProcessor的典型利用:PropertySourcesPlaceholderConfigurer
首先咱们来看一下配置文件:
<bean id="hello" class="cn.jack.Hello">
<property name="msg">
<value>${bean.msg}</value>
</property>
</bean>
在外面咱们应用到了变量援用:${bean.msg},这就是Spring的扩散配置,咱们能够在配置文件中配置该属性的值。
application.properties
bean.msg=hi
而后咱们再进行配置文件的配置。
<bean id="helloHandler" class="org.springframework.context.support.PropertySourcesPlaceholderConfigurer">
<property name="locations">
<list>
<value>application.properties</value>
</list>
</property>
</bean>
这时候就明确了,咱们通过PreferencesPlaceholderConfigurer中进行获取咱们的配置信息。咱们查看该类能够晓得间接性继承了BeanFactoryPostProcessor接口。
当Spring加载任何实现了这个接口的bean时,都会在bean工厂加载所有bena的配置之后执行postProcessBeanFactory办法。在办法中先后调用了mergeProperties、convertProperties、processProperties这三个办法,别离失去配置、将失去的配置进行转换为适合的类型、最初将配置内容告知BeanFactory。
正是通过实现BeanFactoryPostProcessor,BeanFactory会在实例化任何bean之前取得配置信息,从而可能正确解析bean配置文件中的变量援用。
PropertySourcesPlaceholderConfigurer曾经取代了PropertyPlaceholderConfigurer,因为汇聚了Environment、多个PropertySource。所以它可能管制取值优先级、程序,并且还提供了拜访的办法,前期再想获取也不是问题。
2.应用自定义BeanFactoryPostProcessor
咱们本人实现一个自定义BeanFactoryPostProcessor,去除咱们不想要显示的属性值的性能来展现自定义BeanFactoryPostProcessor的创立及应用,例如bean定义中咱们屏蔽掉‘guapi’、‘shazi’。
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
<bean class="cn.jack.ObscenityRemovingBeanFactoryPostProcessor" id="customBeanFactoryPostProcessor">
<property name="obscenities">
<set>
<value>guapi</value>
<value>shazi</value>
</set>
</property>
</bean>
<bean class="cn.jack.SimpleBean" id="simpleBean">
<property name="userName" value="jack"/>
<property name="address" value="guapi"/>
<property name="email" value="shazi"/>
</bean>
</beans>
public class SimpleBean {
private String userName;
private String email;
private String address;
//getter setter
}
public class ObscenityRemovingBeanFactoryPostProcessor implements BeanFactoryPostProcessor {
private final Set<String> obscenities;
public ObscenityRemovingBeanFactoryPostProcessor() {
this.obscenities = new HashSet<>();
}
/**
* 将所有bean 的参数中含有 obscenities 汇合中的值进行屏蔽
*/
@Override
public void postProcessBeanFactory(ConfigurableListableBeanFactory beanFactory) throws BeansException {
String[] beanNames = beanFactory.getBeanDefinitionNames();
for (String beanName : beanNames) {
final BeanDefinition beanDefinition = beanFactory.getBeanDefinition(beanName);
StringValueResolver valueResolver = strVal -> {
if (isObscene(strVal)){
return "*****";
}
return strVal;
};
final BeanDefinitionVisitor beanDefinitionVisitor = new BeanDefinitionVisitor(valueResolver);
beanDefinitionVisitor.visitBeanDefinition(beanDefinition);
}
}
public boolean isObscene(Object value){
String potentialObscenity = value.toString().toUpperCase();
return this.obscenities.contains(potentialObscenity);
}
public void setObscenities(Set<String> obscenities){
this.obscenities.clear();
for (String obscenity : obscenities) {
this.obscenities.add(obscenity.toUpperCase());
}
}
}
启动类:
public class Test {
public static void main(String[] args) {
ApplicationContext ac = new ClassPathXmlApplicationContext("beanFactory.xml");
SimpleBean simpleBean = (SimpleBean) ac.getBean("simpleBean");
System.out.println(simpleBean);
}
}
输入后果:
SimpleBean{userName='jack', email='*****', address='*****'}
咱们通过ObscenityRemovingBeanFactoryPostProcessor咱们很好的屏蔽掉了咱们不想要显示的属性。
激活BeanFactoryPostProcessor
咱们在理解了BeanFactoryPostProcessor的用法之后就能够持续回到咱们的refresh办法中持续钻研源码了。
进入invokeBeanFactoryPostProcessors办法中。
protected void invokeBeanFactoryPostProcessors(ConfigurableListableBeanFactory beanFactory) {
PostProcessorRegistrationDelegate.invokeBeanFactoryPostProcessors(beanFactory, getBeanFactoryPostProcessors());
// Detect a LoadTimeWeaver and prepare for weaving, if found in the meantime
// (e.g. through an @Bean method registered by ConfigurationClassPostProcessor)
if (beanFactory.getTempClassLoader() == null && beanFactory.containsBean(LOAD_TIME_WEAVER_BEAN_NAME)) {
beanFactory.addBeanPostProcessor(new LoadTimeWeaverAwareProcessor(beanFactory));
beanFactory.setTempClassLoader(new ContextTypeMatchClassLoader(beanFactory.getBeanClassLoader()));
}
}
咱们持续进入具体重载办法中invokeBeanFactoryPostProcessors。
public static void invokeBeanFactoryPostProcessors(
ConfigurableListableBeanFactory beanFactory, List<BeanFactoryPostProcessor> beanFactoryPostProcessors) {
// 将曾经执行过的BeanFactoryPostProcessor存储在processedBeans,避免反复执行
Set<String> processedBeans = new HashSet<>();
//对BeanDefinitionRegistry类型进行解决
if (beanFactory instanceof BeanDefinitionRegistry) {
BeanDefinitionRegistry registry = (BeanDefinitionRegistry) beanFactory;
// 用来寄存BeanFactoryPostProcessor对象
List<BeanFactoryPostProcessor> regularPostProcessors = new ArrayList<>();
// 用来寄存BeanDefinitionRegistryPostProcessor对象
// 不便对立执行实现了BeanDefinitionRegistryPostProcessor接口父类的办法
List<BeanDefinitionRegistryPostProcessor> registryProcessors = new ArrayList<>();
// 解决内部定义的BeanFactoryPostProcessor,将BeanDefinitionRegistryPostProcessor与BeanFactoryPostProcessor辨别开
for (BeanFactoryPostProcessor postProcessor : beanFactoryPostProcessors) {
if (postProcessor instanceof BeanDefinitionRegistryPostProcessor) {
BeanDefinitionRegistryPostProcessor registryProcessor =
(BeanDefinitionRegistryPostProcessor) postProcessor;
//对于BeanDefinitionRegistryPostProcessor类型,须要先调用此办法,再增加到汇合中
registryProcessor.postProcessBeanDefinitionRegistry(registry);
registryProcessors.add(registryProcessor);
} else {
//记录惯例BeanFactoryPostProcessor
regularPostProcessors.add(postProcessor);
}
}
//寄存以后须要执行的BeanDefinitionRegistryPostProcessor
List<BeanDefinitionRegistryPostProcessor> currentRegistryProcessors = new ArrayList<>();
// 调用实现 PriorityOrdered 的 BeanDefinitionRegistryPostProcessor。
// 获取所有实现了BeanDefinitionRegistryPostProcessor接口的类名
String[] postProcessorNames =
beanFactory.getBeanNamesForType(BeanDefinitionRegistryPostProcessor.class, true, false);
for (String ppName : postProcessorNames) {
//判断以后类是否实现了PriorityOrdered接口
if (beanFactory.isTypeMatch(ppName, PriorityOrdered.class)) {
//将BeanDefinitionRegistryPostProcessor类型存入currentRegistryProcessors中
currentRegistryProcessors.add(beanFactory.getBean(ppName, BeanDefinitionRegistryPostProcessor.class));
// 提前寄存到processedBeans,防止反复执行,然而此处还未执行
processedBeans.add(ppName);
}
}
//对currentRegistryProcessors汇合中的BeanDefinitionRegistryPostProcessor类型进行排序
sortPostProcessors(currentRegistryProcessors, beanFactory);
// 增加到registryProcessors汇合,用于后续执行父接口的postProcessBeanFactory办法
registryProcessors.addAll(currentRegistryProcessors);
// 遍历汇合,执行BeanDefinitionRegistryPostProcessor.postProcessBeanDefinitionRegistry()办法
invokeBeanDefinitionRegistryPostProcessors(currentRegistryProcessors, registry);
//执行结束后清空该汇合
currentRegistryProcessors.clear();
// 接着,调用实现 Ordered 的 BeanDefinitionRegistryPostProcessors
// 这里再次获取BeanDefinitionRegistryPostProcessor,是因为有可能在下面办法执行过程中增加了BeanDefinitionRegistryPostProcessor
// 而上面解决BeanFactoryPostProcessor的时候又不须要反复获取了是为什么呢?
// 因为增加BeanFactoryPostProcessor与BeanDefinitionRegistryPostProcessor只能在BeanDefinitionRegistryPostProcessor中增加,在BeanFactoryPostProcessor是无奈增加的
for (String ppName : postProcessorNames) {
// 判断以后bean没有被执行过,并且实现了Ordered接口
if (!processedBeans.contains(ppName) && beanFactory.isTypeMatch(ppName, Ordered.class)) {
//如果BeanFactory中没有该Bean则会去创立该Bean
currentRegistryProcessors.add(beanFactory.getBean(ppName, BeanDefinitionRegistryPostProcessor.class));
processedBeans.add(ppName);
}
}
sortPostProcessors(currentRegistryProcessors, beanFactory);
registryProcessors.addAll(currentRegistryProcessors);
invokeBeanDefinitionRegistryPostProcessors(currentRegistryProcessors, registry);
currentRegistryProcessors.clear();
//最初解决没有实现Ordered与PriorityOrdered接口的BeanDefinitionRegistryPostProcessor
boolean reiterate = true;
while (reiterate) {
reiterate = false;
// 再次获取BeanDefinitionRegistryPostProcessor
postProcessorNames = beanFactory.getBeanNamesForType(BeanDefinitionRegistryPostProcessor.class, true, false);
for (String ppName : postProcessorNames) {
if (!processedBeans.contains(ppName)) {
// 将本次要执行的BeanDefinitionRegistryPostProcessor寄存到currentRegistryProcessors
currentRegistryProcessors.add(beanFactory.getBean(ppName, BeanDefinitionRegistryPostProcessor.class));
processedBeans.add(ppName);
reiterate = true;
}
}
sortPostProcessors(currentRegistryProcessors, beanFactory);
registryProcessors.addAll(currentRegistryProcessors);
invokeBeanDefinitionRegistryPostProcessors(currentRegistryProcessors, registry);
currentRegistryProcessors.clear();
}
//当初,调用到目前为止解决的所有处理器的 postProcessBeanFactory 回调。
invokeBeanFactoryPostProcessors(registryProcessors, beanFactory);
invokeBeanFactoryPostProcessors(regularPostProcessors, beanFactory);
} else {
// BeanFactory如果不归属于BeanDefinitionRegistry类型,则间接执行beanFactoryPostProcessor
invokeBeanFactoryPostProcessors(beanFactoryPostProcessors, beanFactory);
}
String[] postProcessorNames =
beanFactory.getBeanNamesForType(BeanFactoryPostProcessor.class, true, false);
// 用于寄存实现了priorityOrdered接口的BeanFactoryPostProcessor
List<BeanFactoryPostProcessor> priorityOrderedPostProcessors = new ArrayList<>();
// 用于寄存实现了ordered接口的BeanFactoryPostProcessor名称
List<String> orderedPostProcessorNames = new ArrayList<>();
// 用于寄存无排序的BeanFactoryPostProcessor名称
List<String> nonOrderedPostProcessorNames = new ArrayList<>();
for (String ppName : postProcessorNames) {
// 如果曾经执行过了,则不做解决
if (processedBeans.contains(ppName)) {
// skip - already processed in first phase above
}
// 如果实现了PriorityOrdered 则增加
else if (beanFactory.isTypeMatch(ppName, PriorityOrdered.class)) {
priorityOrderedPostProcessors.add(beanFactory.getBean(ppName, BeanFactoryPostProcessor.class));
}
// 如果实现了Ordered 则增加
else if (beanFactory.isTypeMatch(ppName, Ordered.class)) {
orderedPostProcessorNames.add(ppName);
}
//如果没有排序则增加到指定汇合
else {
nonOrderedPostProcessorNames.add(ppName);
}
}
// 首先调用实现 PriorityOrdered 的 BeanFactoryPostProcessor。
sortPostProcessors(priorityOrderedPostProcessors, beanFactory);
invokeBeanFactoryPostProcessors(priorityOrderedPostProcessors, beanFactory);
// 而后调用实现 Ordered 的 BeanFactoryPostProcessors。
List<BeanFactoryPostProcessor> orderedPostProcessors = new ArrayList<>(orderedPostProcessorNames.size());
for (String postProcessorName : orderedPostProcessorNames) {
orderedPostProcessors.add(beanFactory.getBean(postProcessorName, BeanFactoryPostProcessor.class));
}
sortPostProcessors(orderedPostProcessors, beanFactory);
invokeBeanFactoryPostProcessors(orderedPostProcessors, beanFactory);
// 最初调用其余没有排序的 BeanFactoryPostProcessor。
List<BeanFactoryPostProcessor> nonOrderedPostProcessors = new ArrayList<>(nonOrderedPostProcessorNames.size());
for (String postProcessorName : nonOrderedPostProcessorNames) {
nonOrderedPostProcessors.add(beanFactory.getBean(postProcessorName, BeanFactoryPostProcessor.class));
}
invokeBeanFactoryPostProcessors(nonOrderedPostProcessors, beanFactory);
// 清空缓存
beanFactory.clearMetadataCache();
}
注册BeanPostProcessor
理解了BeanFactoryPostProcessors的调用后,咱们当初来理解下BeanPostProcessor,这里仅仅是注册,并不是调用。真正的调用在bean实例化阶段进行的。
在BeanFactory中并没有实现后处理器的主动注册性能,所以在调用的时候如果没有进行被动注册则是不可能应用的。然而在ApplicationContext中增加了被动注册性能。
比方自定义这样的后处理器:
public class MyInstantiationAwareBeanPostProcessor implements InstantiationAwareBeanPostProcessor {
@Override
public Object postProcessBeforeInstantiation(Class<?> beanClass, String beanName) throws BeansException {
System.out.println("===");
return null;
}
}
<bean class="cn.jack.MyInstantiationAwareBeanPostProcessor"/>
在应用ApplicationContext形式获取bean的时候会在获取之前打印出“===”,在BeanFactory形式进行bean的加载是不会有该打印的。
这个个性就是在registerBeanPostProcessors中实现的。
public static void registerBeanPostProcessors(
ConfigurableListableBeanFactory beanFactory, AbstractApplicationContext applicationContext) {
//获取所有实现BeanPostProcessor接口的类
String[] postProcessorNames = beanFactory.getBeanNamesForType(BeanPostProcessor.class, true, false);
//注册一个 BeanPostProcessorChecker,用来记录 bean 在 BeanPostProcessor 实例化时的信息
int beanProcessorTargetCount = beanFactory.getBeanPostProcessorCount() + 1 + postProcessorNames.length;
beanFactory.addBeanPostProcessor(new BeanPostProcessorChecker(beanFactory, beanProcessorTargetCount));
//辨别实现不同接口的 BeanPostProcessors
List<BeanPostProcessor> priorityOrderedPostProcessors = new ArrayList<>();
List<BeanPostProcessor> internalPostProcessors = new ArrayList<>();
List<String> orderedPostProcessorNames = new ArrayList<>();
List<String> nonOrderedPostProcessorNames = new ArrayList<>();
//依据不同类型进行add
for (String ppName : postProcessorNames) {
if (beanFactory.isTypeMatch(ppName, PriorityOrdered.class)) {
BeanPostProcessor pp = beanFactory.getBean(ppName, BeanPostProcessor.class);
priorityOrderedPostProcessors.add(pp);
if (pp instanceof MergedBeanDefinitionPostProcessor) {
internalPostProcessors.add(pp);
}
} else if (beanFactory.isTypeMatch(ppName, Ordered.class)) {
orderedPostProcessorNames.add(ppName);
} else {
nonOrderedPostProcessorNames.add(ppName);
}
}
// 排序后执行注册实现了 PriorityOrdered 的 BeanPostProcessors
sortPostProcessors(priorityOrderedPostProcessors, beanFactory);
registerBeanPostProcessors(beanFactory, priorityOrderedPostProcessors);
//注册实现Ordered接口的BeanPostProcessors
List<BeanPostProcessor> orderedPostProcessors = new ArrayList<>(orderedPostProcessorNames.size());
for (String ppName : orderedPostProcessorNames) {
//拿到ppName对应的BeanPostProcessor实例对象
BeanPostProcessor pp = beanFactory.getBean(ppName, BeanPostProcessor.class);
//将ppName对应的BeanPostProcessor实例对象增加到orderedPostProcessors, 筹备执行注册
orderedPostProcessors.add(pp);
if (pp instanceof MergedBeanDefinitionPostProcessor) {
//如果ppName对应的bean实例也实现了MergedBeanDefinitionPostProcessor接口,则增加到该汇合中
internalPostProcessors.add(pp);
}
}
//对orderedPostProcessors进行排序并注册
sortPostProcessors(orderedPostProcessors, beanFactory);
registerBeanPostProcessors(beanFactory, orderedPostProcessors);
//注册所有惯例的BeanPostProcessors,过程同上
List<BeanPostProcessor> nonOrderedPostProcessors = new ArrayList<>(nonOrderedPostProcessorNames.size());
for (String ppName : nonOrderedPostProcessorNames) {
BeanPostProcessor pp = beanFactory.getBean(ppName, BeanPostProcessor.class);
nonOrderedPostProcessors.add(pp);
if (pp instanceof MergedBeanDefinitionPostProcessor) {
internalPostProcessors.add(pp);
}
}
registerBeanPostProcessors(beanFactory, nonOrderedPostProcessors);
//注册所有mergedBeanDefinitionPostProcessor类型的BeanPostProcessor,并非反复注册
//在beanFactory.addBeanPostProcessor中会先移除曾经存在的BeanPostProcessor
sortPostProcessors(internalPostProcessors, beanFactory);
registerBeanPostProcessors(beanFactory, internalPostProcessors);
// 增加ApplicationListener探测器
beanFactory.addBeanPostProcessor(new ApplicationListenerDetector(applicationContext));
}
初始化音讯资源
在initMessageSource中次要性能是提取配置文件中的messageSource,并将其记录在Spring容器中,也就是ApplicationContext中。如果用户未设置资源文件的话,则获取Spring默认的配置delegatingMessageSource。
protected void initMessageSource() {
ConfigurableListableBeanFactory beanFactory = getBeanFactory();
// Bean 的名称必须要是 messageSource
if (beanFactory.containsLocalBean(MESSAGE_SOURCE_BEAN_NAME)) { //MESSAGE_SOURCE_BEAN_NAME = messageSource
this.messageSource = beanFactory.getBean(MESSAGE_SOURCE_BEAN_NAME, MessageSource.class);
// Make MessageSource aware of parent MessageSource.
if (this.parent != null && this.messageSource instanceof HierarchicalMessageSource) {
HierarchicalMessageSource hms = (HierarchicalMessageSource) this.messageSource;
if (hms.getParentMessageSource() == null) {
// Only set parent context as parent MessageSource if no parent MessageSource
// registered already.
hms.setParentMessageSource(getInternalParentMessageSource());
}
}
if (logger.isTraceEnabled()) {
logger.trace("Using MessageSource [" + this.messageSource + "]");
}
}
else {
//如果用户并没有定义配置文件,那么应用长期的DelegatingMessageSource以便于作为调用getMessage的返回
DelegatingMessageSource dms = new DelegatingMessageSource();
dms.setParentMessageSource(getInternalParentMessageSource());
this.messageSource = dms;
beanFactory.registerSingleton(MESSAGE_SOURCE_BEAN_NAME, this.messageSource);
if (logger.isTraceEnabled()) {
logger.trace("No '" + MESSAGE_SOURCE_BEAN_NAME + "' bean, using [" + this.messageSource + "]");
}
}
}
这里规定资源文件必须为messageSource,否则就会获取不到自定义资源配置。
初始化ApplicationEventMulticaster
initApplicationEventMulticaster办法实现比较简单,存在两种状况:
- 如果用户自定义了事件播送器,那么就是用用户自定义的事件播送器
- 如果用户没有自定义事件播送器,那么应用默认的ApplicationEventMulticaster
protected void initApplicationEventMulticaster() {
ConfigurableListableBeanFactory beanFactory = getBeanFactory();
//判断容器中是否存在BeanDefinitionName为applicationEventMulticaster的bd,也就是自定义的事件监听多路播送器,必须实现ApplicationEventMulticaster接口
if (beanFactory.containsLocalBean(APPLICATION_EVENT_MULTICASTER_BEAN_NAME)) {
this.applicationEventMulticaster =
beanFactory.getBean(APPLICATION_EVENT_MULTICASTER_BEAN_NAME, ApplicationEventMulticaster.class);
if (logger.isTraceEnabled()) {
logger.trace("Using ApplicationEventMulticaster [" + this.applicationEventMulticaster + "]");
}
}
else {
//如果没有,则默认采纳SimpleApplicationEventMulticaster
this.applicationEventMulticaster = new SimpleApplicationEventMulticaster(beanFactory);
beanFactory.registerSingleton(APPLICATION_EVENT_MULTICASTER_BEAN_NAME, this.applicationEventMulticaster);
if (logger.isTraceEnabled()) {
logger.trace("No '" + APPLICATION_EVENT_MULTICASTER_BEAN_NAME + "' bean, using " +
"[" + this.applicationEventMulticaster.getClass().getSimpleName() + "]");
}
}
}
最初,作为播送器,肯定是用于寄存监听器并在适合的时候调用监听器,咱们进入默认的播送器实现类SimpleApplicationEventMulticaster中看一下。
看到如下办法:
public void multicastEvent(final ApplicationEvent event, @Nullable ResolvableType eventType) {
ResolvableType type = (eventType != null ? eventType : resolveDefaultEventType(event));
Executor executor = getTaskExecutor();
for (ApplicationListener<?> listener : getApplicationListeners(event, type)) {
if (executor != null) {
executor.execute(() -> invokeListener(listener, event));
}
else {
invokeListener(listener, event);
}
}
}
能够推断,当产生Spring事件的时候会默认应用SimpleApplicationEventMulticaster的multicastEvent来播送事件,遍历所有监听器,并应用监听器中的onApplicationEvent办法来进行监听器的解决。而对于每个监听器来说其实都能够获取到产生的事件,然而是否进行解决则由事件监听器决定。
注册监听器
咱们重复提到了监听器,咱们接下来看一下Spring注册监听器的时候又做了哪些逻辑操作?
protected void registerListeners() {
// 首先注册动态的指定的监听器,注册的是非凡的事件监听器,而不是配置中的bean
for (ApplicationListener<?> listener : getApplicationListeners()) {
getApplicationEventMulticaster().addApplicationListener(listener);
}
// 这里不会初始化FactoryBean,咱们须要保留所有的一般bean
// 不会实例化这些bean,让后置处理器能够感知到它们
String[] listenerBeanNames = getBeanNamesForType(ApplicationListener.class, true, false);
for (String listenerBeanName : listenerBeanNames) {
getApplicationEventMulticaster().addApplicationListenerBean(listenerBeanName);
}
// 当初有了事件播送组,公布之前的利用事件
Set<ApplicationEvent> earlyEventsToProcess = this.earlyApplicationEvents;
this.earlyApplicationEvents = null;
if (earlyEventsToProcess != null) {
for (ApplicationEvent earlyEvent : earlyEventsToProcess) {
getApplicationEventMulticaster().multicastEvent(earlyEvent);
}
}
}
只是将一些非凡的监听器注册到播送组中,那些在bean配置文件中实现了ApplicationListener接口的类还没有实例化,所以此时只是将name保留到了播送组中,将这些监听器注册到播送组中的操作时在bean的后置处理器中实现的,那时候bean的实例化曾经实现了。
初始化非提早加载单例
实现BeanFactory的初始化工作,其中包含ConversionService的设置、配置解冻以及非提早加载的bean的初始化工作。
protected void finishBeanFactoryInitialization(ConfigurableListableBeanFactory beanFactory) {
// 初始化此上下文的转换服务
if (beanFactory.containsBean(CONVERSION_SERVICE_BEAN_NAME) &&
beanFactory.isTypeMatch(CONVERSION_SERVICE_BEAN_NAME, ConversionService.class)) {
beanFactory.setConversionService(
beanFactory.getBean(CONVERSION_SERVICE_BEAN_NAME, ConversionService.class));
}
// 如果beanFactory之前没有注册解析器,则注册默认的解析器,例如${}解析成真正的属性:次要用于注解属性值的解析
if (!beanFactory.hasEmbeddedValueResolver()) {
beanFactory.addEmbeddedValueResolver(strVal -> getEnvironment().resolvePlaceholders(strVal));
}
//解决 @EnableLoadTimeWeaving 或 <context:load-time-weaver/> 标记的类
String[] weaverAwareNames = beanFactory.getBeanNamesForType(LoadTimeWeaverAware.class, false, false);
for (String weaverAwareName : weaverAwareNames) {
getBean(weaverAwareName);
}
//长期类加载器设置为空
beanFactory.setTempClassLoader(null);
//解冻所有的bean定义,阐明注册的bean定义将不被批改或者进一步解决
beanFactory.freezeConfiguration();
//初始化剩下的单例实例(非惰性)
beanFactory.preInstantiateSingletons();
}
首先,咱们先理解下ConversionService类所提供的作用。
1.ConversionService的设置
之前咱们提到能够用自定义类型转换器把String类型转换为Date,在Spring中也提供了应用Converter来进行转换。
2.解冻配置
解冻所有的bean定义,阐明注册的bean定义将不被批改或者进行任何一步的解决。
public void freezeConfiguration() {
this.configurationFrozen = true;
this.frozenBeanDefinitionNames = StringUtils.toStringArray(this.beanDefinitionNames);
}
3.初始化提早加载
ApplicationContext实现的默认行为就是在启动时将所有单例bean提前进行实例化。提前实例化也就意味着作为初始化过程的一部分,ApplicationContext实例会创立并配置所有单例bean,这个实例化过程就是在finishBeanFactoryInitialization办法中的preInstantiateSingletons办法中实现的。
public void preInstantiateSingletons() throws BeansException {
if (logger.isTraceEnabled()) {
logger.trace("Pre-instantiating singletons in " + this);
}
//创立beanDefinitionNames的正本beanNames用于后续的遍历,以容许init等办法注册新的bean定义
List<String> beanNames = new ArrayList<>(this.beanDefinitionNames);
//遍历beanNames,触发所有非懒加载单例bean的初始化
for (String beanName : beanNames) {
//获取beanName对应的MergedBeanDefinition
RootBeanDefinition bd = getMergedLocalBeanDefinition(beanName);
//bd对应的不是抽象类 && 并且是单例 && 并且不是懒加载
if (!bd.isAbstract() && bd.isSingleton() && !bd.isLazyInit()) {
//判断是否为FactoryBean
if (isFactoryBean(beanName)) {
//通过前缀&和beanName拿到Bean
Object bean = getBean(FACTORY_BEAN_PREFIX + beanName);
//如果为FactoryBean
if (bean instanceof FactoryBean) {
final FactoryBean<?> factory = (FactoryBean<?>) bean;
//判断这个FactoryBean是否心愿急迫的初始化
boolean isEagerInit;
if (System.getSecurityManager() != null && factory instanceof SmartFactoryBean) {
isEagerInit = AccessController.doPrivileged((PrivilegedAction<Boolean>)
((SmartFactoryBean<?>) factory)::isEagerInit,
getAccessControlContext());
}
else {
isEagerInit = (factory instanceof SmartFactoryBean &&
((SmartFactoryBean<?>) factory).isEagerInit());
}
//如果心愿急迫的初始化,则通过beanName获取bean实例
if (isEagerInit) {
getBean(beanName);
}
}
}
else {
//如果beanName对应的bean不是FactoryBean,只是一般Bean,通过beanName获取bean实例
getBean(beanName);
}
}
}
//遍历beanNames,触发所有SmartInitializingSingleton的后初始化回调
for (String beanName : beanNames) {
//拿到beanName对应的bean实例
Object singletonInstance = getSingleton(beanName);
//判断singletonInstance是否实现了SmartInitializingSingleton接口
if (singletonInstance instanceof SmartInitializingSingleton) {
final SmartInitializingSingleton smartSingleton = (SmartInitializingSingleton) singletonInstance;
//触发SmartInitializingSingleton实现类的afterSingletonsInstantiated办法
if (System.getSecurityManager() != null) {
AccessController.doPrivileged((PrivilegedAction<Object>) () -> {
smartSingleton.afterSingletonsInstantiated();
return null;
}, getAccessControlContext());
}
else {
smartSingleton.afterSingletonsInstantiated();
}
}
}
}
finishRefresh
在Spring中提供了Lifecycle接口,该接口蕴含start/stop办法,实现此接口后Spring会保障在启动时候调用其start办法开始申明周期,并在Spring敞开时候调用stop办法来完结申明周期。通常用来配置后台程序,在启动后始终运行(比方MQ)而ApplicationContext最初一步finishRefresh办法就是实现这一性能。
protected void finishRefresh() {
//革除资源缓存
clearResourceCaches();
//1.为此上下文初始化生命周期处理器
initLifecycleProcessor();
//2.首先将刷新结束事件流传到生命周期处理器(触发isAutoStartup办法返回true的SmartLifecycle的start办法)
getLifecycleProcessor().onRefresh();
//3.推送上下文刷新结束事件到相应的监听器
publishEvent(new ContextRefreshedEvent(this));
// Participate in LiveBeansView MBean, if active.
LiveBeansView.registerApplicationContext(this);
}
1.initLifecycleProcessor
当ApplicationContext启动或进行时,它会通过LifecycleProcessor来和所有申明的bean的周期做状态更新,而在LifecycleProcessor的应用前首先进行初始化。
protected void initLifecycleProcessor() {
ConfigurableListableBeanFactory beanFactory = getBeanFactory();
//判断BeanFactory是否曾经存在生命周期处理器(beanName=lifecycleProcessor)
if (beanFactory.containsLocalBean(LIFECYCLE_PROCESSOR_BEAN_NAME)) {
this.lifecycleProcessor =
beanFactory.getBean(LIFECYCLE_PROCESSOR_BEAN_NAME, LifecycleProcessor.class);
if (logger.isTraceEnabled()) {
logger.trace("Using LifecycleProcessor [" + this.lifecycleProcessor + "]");
}
}
else {
//如果不存在,则应用DefaultLifecycleProcessor
DefaultLifecycleProcessor defaultProcessor = new DefaultLifecycleProcessor();
defaultProcessor.setBeanFactory(beanFactory);
this.lifecycleProcessor = defaultProcessor;
// 并将DefaultLifecycleProcessor作为默认的生命周期处理器,注册到BeanFactory中
beanFactory.registerSingleton(LIFECYCLE_PROCESSOR_BEAN_NAME, this.lifecycleProcessor);
if (logger.isTraceEnabled()) {
logger.trace("No '" + LIFECYCLE_PROCESSOR_BEAN_NAME + "' bean, using " +
"[" + this.lifecycleProcessor.getClass().getSimpleName() + "]");
}
}
}
2.onRefresh
启动所有实现了Lifecycle接口的bean
public void onRefresh() {
startBeans(true);
this.running = true;
}
private void startBeans(boolean autoStartupOnly) {
Map<String, Lifecycle> lifecycleBeans = getLifecycleBeans();
Map<Integer, LifecycleGroup> phases = new HashMap<>();
lifecycleBeans.forEach((beanName, bean) -> {
if (!autoStartupOnly || (bean instanceof SmartLifecycle && ((SmartLifecycle) bean).isAutoStartup())) {
int phase = getPhase(bean);
LifecycleGroup group = phases.get(phase);
if (group == null) {
group = new LifecycleGroup(phase, this.timeoutPerShutdownPhase, lifecycleBeans, autoStartupOnly);
phases.put(phase, group);
}
group.add(beanName, bean);
}
});
if (!phases.isEmpty()) {
List<Integer> keys = new ArrayList<>(phases.keySet());
Collections.sort(keys);
for (Integer key : keys) {
phases.get(key).start();
}
}
}
3.publishEvent
当实现ApplicationContext初始化的时候,要通过Spring中的公布机制来收回ContextRefreshedEvent事件,以保障对应的监听器能够做进一步的逻辑解决。
protected void publishEvent(Object event, @Nullable ResolvableType eventType) {
Assert.notNull(event, "Event must not be null");
//如有必要,将事件装璜为ApplicationEvent
ApplicationEvent applicationEvent;
if (event instanceof ApplicationEvent) {
applicationEvent = (ApplicationEvent) event;
}
else {
applicationEvent = new PayloadApplicationEvent<>(this, event);
if (eventType == null) {
eventType = ((PayloadApplicationEvent<?>) applicationEvent).getResolvableType();
}
}
// Multicast right now if possible - or lazily once the multicaster is initialized
if (this.earlyApplicationEvents != null) {
this.earlyApplicationEvents.add(applicationEvent);
}
else {
//应用事件播送器播送事件到相应的监听器
getApplicationEventMulticaster().multicastEvent(applicationEvent, eventType);
}
//通过parent公布事件
if (this.parent != null) {
if (this.parent instanceof AbstractApplicationContext) {
((AbstractApplicationContext) this.parent).publishEvent(event, eventType);
}
else {
this.parent.publishEvent(event);
}
}
}
到这里,refresh办法就解析实现了。下一步就是AOP了。
发表回复