共计 2469 个字符,预计需要花费 7 分钟才能阅读完成。
本文将疏导疾速应用 MMSkeleton,介绍用摄像头测试实时姿势预计。
- MMSkeleton: https://github.com/open-mmlab…
装置
首先装置 MMDetection,可见 MMDetection 应用。
而后装置 MMSkeleton,
# 启用 Python 虚拟环境
conda activate open-mmlab
# 下载 MMSkeleton
git clone https://github.com/open-mmlab/mmskeleton.git
cd mmskeleton
# 装置 MMSkeleton
python setup.py develop
# 装置 nms op for person estimation
cd mmskeleton/ops/nms/
python setup_linux.py develop
cd ../../../
现有模型,视频测试
配置
configs/pose_estimation/pose_demo.yaml
:
processor_cfg:
video_file: resource/data_example/ta_chi.mp4
detection_cfg:
model_cfg: ../mmdetection/configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py
checkpoint_file: ../mmdetection/checkpoints/cascade_rcnn_r50_fpn_1x_coco_20200316-3dc56deb.pth
bbox_thre: 0.8
选用的检测模型,如下:
-
Cascade R-CNN, R-50-FPN, 1x
- config
- model
运行
# verify that mmskeleton and mmdetection installed correctly
# python mmskl.py pose_demo [--gpus $GPUS]
python mmskl.py pose_demo --gpus 1
后果将会存到 work_dir/pose_demo/ta_chi.mp4
。
现有模型,WebCam 测试
配置
configs/apis/pose_estimator.cascade_rcnn+hrnet.yaml
:
detection_cfg:
model_cfg: mmdetection/configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py
checkpoint_file: mmdetection/checkpoints/cascade_rcnn_r50_fpn_1x_coco_20200316-3dc56deb.pth
bbox_thre: 0.8
estimation_cfg:
model_cfg: mmskeleton/configs/pose_estimation/hrnet/pose_hrnet_w32_256x192_test.yaml
checkpoint_file: mmskeleton://pose_estimation/pose_hrnet_w32_256x192
data_cfg:
image_size:
- 192
- 256
pixel_std: 200
image_mean:
- 0.485
- 0.456
- 0.406
image_std:
- 0.229
- 0.224
- 0.225
post_process: true
确认 detection_cfg
estimation_cfg
的门路正确。
写码
编写 webcam.py,次要代码如下:
def main():
args = parse_args()
win_name = args.win_name
cv.namedWindow(win_name, cv.WINDOW_NORMAL)
with Camera(args.cam_idx, args.cam_width, args.cam_height, args.cam_fps) as cam:
cfg = mmcv.Config.fromfile(args.cfg_file)
detection_cfg = cfg["detection_cfg"]
print("Loading model ...")
model = init_pose_estimator(**cfg, device=0)
print("Loading model done")
for frame in cam.reads():
res = inference_pose_estimator(model, frame)
res_image = pose_demo.render(frame, res["joint_preds"], res["person_bbox"],
detection_cfg.bbox_thre)
cv.imshow(win_name, res_image)
key = cv.waitKey(1) & 0xFF
if key == 27 or key == ord("q"):
break
cv.destroyAllWindows()
运行
$ python webcam.py \
--cam_idx 2 --cam_width 640 --cam_height 480 --cam_fps 10 \
--cfg_file configs/apis/pose_estimator.cascade_rcnn+hrnet.yaml
Args
win_name: webcam
cam_idx: 2
cam_width: 640
cam_height: 480
cam_fps: 10
cfg_file: configs/apis/pose_estimator.cascade_rcnn+hrnet.yaml
CAM: 640.0x480.0 10.0
Loading model ...
Loading model done
成果,
摄像头参数,可见 WebCam 摄像头应用。
更多
- Awesome Human Pose Estimation
- Awesome Skeleton based Action Recognition
GoCoding 集体实际的教训分享,可关注公众号!
正文完