共计 23290 个字符,预计需要花费 59 分钟才能阅读完成。
异步并发数限度
/**
* 关键点
* 1. new promise 一经创立,立刻执行
* 2. 应用 Promise.resolve().then 能够把工作加到微工作队列,避免立刻执行迭代办法
* 3. 微工作处理过程中,产生的新的微工作,会在同一事件循环内,追加到微工作队列里
* 4. 应用 race 在某个工作实现时,持续增加工作,放弃工作依照最大并发数进行执行
* 5. 工作实现后,须要从 doingTasks 中移出
*/
function limit(count, array, iterateFunc) {const tasks = []
const doingTasks = []
let i = 0
const enqueue = () => {if (i === array.length) {return Promise.resolve()
}
const task = Promise.resolve().then(() => iterateFunc(array[i++]))
tasks.push(task)
const doing = task.then(() => doingTasks.splice(doingTasks.indexOf(doing), 1))
doingTasks.push(doing)
const res = doingTasks.length >= count ? Promise.race(doingTasks) : Promise.resolve()
return res.then(enqueue)
};
return enqueue().then(() => Promise.all(tasks))
}
// test
const timeout = i => new Promise(resolve => setTimeout(() => resolve(i), i))
limit(2, [1000, 1000, 1000, 1000], timeout).then((res) => {console.log(res)
})
实现 some 办法
Array.prototype.mySome=function(callback, context = window){
var len = this.length,
flag=false,
i = 0;
for(;i < len; i++){if(callback.apply(context, [this[i], i , this])){
flag=true;
break;
}
}
return flag;
}
// var flag=arr.mySome((v,index,arr)=>v.num>=10,obj)
// console.log(flag);
实现 ES6 的 extends
function B(name){this.name = name;};
function A(name,age){
//1. 将 A 的原型指向 B
Object.setPrototypeOf(A,B);
//2. 用 A 的实例作为 this 调用 B, 失去继承 B 之后的实例,这一步相当于调用 super
Object.getPrototypeOf(A).call(this, name)
//3. 将 A 原有的属性增加到新实例上
this.age = age;
//4. 返回新实例对象
return this;
};
var a = new A('poetry',22);
console.log(a);
实现 call 办法
call 做了什么:
- 将函数设为对象的属性
- 执行和删除这个函数
- 指定
this
到函数并传入给定参数执行函数 - 如果不传入参数,默认指向为
window
// 模仿 call bar.mycall(null);
// 实现一个 call 办法:// 原理:利用 context.xxx = self obj.xx = func-->obj.xx()
Function.prototype.myCall = function(context = window, ...args) {if (typeof this !== "function") {throw new Error('type error')
}
// this-->func context--> obj args--> 传递过去的参数
// 在 context 上加一个惟一值不影响 context 上的属性
let key = Symbol('key')
context[key] = this; // context 为调用的上下文,this 此处为函数,将这个函数作为 context 的办法
// let args = [...arguments].slice(1) // 第一个参数为 obj 所以删除, 伪数组转为数组
// 绑定参数 并执行函数
let result = context[key](...args);
// 革除定义的 this 不删除会导致 context 属性越来越多
delete context[key];
// 返回后果
return result;
};
// 用法:f.call(obj,arg1)
function f(a,b){console.log(a+b)
console.log(this.name)
}
let obj={name:1}
f.myCall(obj,1,2) // 否则 this 指向 window
实现 map 办法
- 回调函数的参数有哪些,返回值如何解决
- 不批改原来的数组
Array.prototype.myMap = function(callback, context){
// 转换类数组
var arr = Array.prototype.slice.call(this),// 因为是 ES5 所以就不必... 开展符了
mappedArr = [],
i = 0;
for (; i < arr.length; i++){// 把以后值、索引、以后数组返回去。调用的时候传到函数参数中 [1,2,3,4].map((curr,index,arr))
mappedArr.push(callback.call(context, arr[i], i, this));
}
return mappedArr;
}
实现 reduce 办法
- 初始值不传怎么解决
- 回调函数的参数有哪些,返回值如何解决。
Array.prototype.myReduce = function(fn, initialValue) {var arr = Array.prototype.slice.call(this);
var res, startIndex;
res = initialValue ? initialValue : arr[0]; // 不传默认取数组第一项
startIndex = initialValue ? 0 : 1;
for(var i = startIndex; i < arr.length; i++) {// 把初始值、以后值、索引、以后数组返回去。调用的时候传到函数参数中 [1,2,3,4].reduce((initVal,curr,index,arr))
res = fn.call(null, res, arr[i], i, this);
}
return res;
}
参考 前端进阶面试题具体解答
实现 Array.isArray 办法
Array.myIsArray = function(o) {return Object.prototype.toString.call(Object(o)) === '[object Array]';
};
console.log(Array.myIsArray([])); // true
实现节流函数(throttle)
节流函数原理: 指频繁触发事件时,只会在指定的时间段内执行事件回调,即触发事件间隔大于等于指定的工夫才会执行回调函数。总结起来就是:事件,依照一段时间的距离来进行触发。
像 dom 的拖拽,如果用消抖的话,就会呈现卡顿的感觉,因为只在进行的时候执行了一次,这个时候就应该用节流,在肯定工夫内屡次执行,会晦涩很多
手写简版
应用工夫戳的节流函数会在第一次触发事件时立刻执行,当前每过 wait 秒之后才执行一次,并且最初一次触发事件不会被执行
工夫戳形式:
// func 是用户传入须要防抖的函数
// wait 是等待时间
const throttle = (func, wait = 50) => {
// 上一次执行该函数的工夫
let lastTime = 0
return function(...args) {
// 以后工夫
let now = +new Date()
// 将以后工夫和上一次执行函数工夫比照
// 如果差值大于设置的等待时间就执行函数
if (now - lastTime > wait) {
lastTime = now
func.apply(this, args)
}
}
}
setInterval(throttle(() => {console.log(1)
}, 500),
1
)
定时器形式:
应用定时器的节流函数在第一次触发时不会执行,而是在 delay 秒之后才执行,当最初一次进行触发后,还会再执行一次函数
function throttle(func, delay){
var timer = null;
returnfunction(){
var context = this;
var args = arguments;
if(!timer){timer = setTimeout(function(){func.apply(context, args);
timer = null;
},delay);
}
}
}
实用场景:
DOM
元素的拖拽性能实现(mousemove
)- 搜寻联想(
keyup
) - 计算鼠标挪动的间隔(
mousemove
) Canvas
模仿画板性能(mousemove
)- 监听滚动事件判断是否到页面底部主动加载更多
- 拖拽场景:固定工夫内只执行一次,避免超高频次触发地位变动
- 缩放场景:监控浏览器
resize
- 动画场景:防止短时间内屡次触发动画引起性能问题
总结
- 函数防抖:将几次操作合并为一次操作进行。原理是保护一个计时器,规定在 delay 工夫后触发函数,然而在 delay 工夫内再次触发的话,就会勾销之前的计时器而从新设置。这样一来,只有最初一次操作能被触发。
- 函数节流:使得肯定工夫内只触发一次函数。原理是通过判断是否达到肯定工夫来触发函数。
实现迭代器生成函数
咱们说 迭代器对象 全凭 迭代器生成函数 帮咱们生成。在 ES6
中,实现一个迭代器生成函数并不是什么难事儿,因为 ES6 早帮咱们思考好了全套的解决方案,内置了贴心的 生成器(Generator
)供咱们应用:
// 编写一个迭代器生成函数
function *iteratorGenerator() {
yield '1 号选手'
yield '2 号选手'
yield '3 号选手'
}
const iterator = iteratorGenerator()
iterator.next()
iterator.next()
iterator.next()
丢进控制台,不负众望:
写一个生成器函数并没有什么难度,但在面试的过程中,面试官往往对生成器这种语法糖背地的实现逻辑更感兴趣。上面咱们要做的,不仅仅是写一个迭代器对象,而是用 ES5
去写一个可能生成迭代器对象的迭代器生成函数(解析在正文里):
// 定义生成器函数,入参是任意汇合
function iteratorGenerator(list) {
// idx 记录以后拜访的索引
var idx = 0
// len 记录传入汇合的长度
var len = list.length
return {
// 自定义 next 办法
next: function() {
// 如果索引还没有超出汇合长度,done 为 false
var done = idx >= len
// 如果 done 为 false,则能够持续取值
var value = !done ? list[idx++] : undefined
// 将以后值与遍历是否结束(done)返回
return {
done: done,
value: value
}
}
}
}
var iterator = iteratorGenerator(['1 号选手', '2 号选手', '3 号选手'])
iterator.next()
iterator.next()
iterator.next()
此处为了记录每次遍历的地位,咱们实现了一个闭包,借助自在变量来做咱们的迭代过程中的“游标”。
运行一下咱们自定义的迭代器,后果合乎预期:
实现数组的 map 办法
Array.prototype._map = function(fn) {if (typeof fn !== "function") {throw Error('参数必须是一个函数');
}
const res = [];
for (let i = 0, len = this.length; i < len; i++) {res.push(fn(this[i]));
}
return res;
}
实现 Object.is
Object.is
不会转换被比拟的两个值的类型,这点和 ===
更为类似,他们之间也存在一些区别
NaN
在===
中是不相等的,而在Object.is
中是相等的+0
和-
0 在===
中是相等的,而在Object.is
中是不相等的
Object.is = function (x, y) {if (x === y) {
// 当前情况下,只有一种状况是非凡的,即 +0 -0
// 如果 x !== 0,则返回 true
// 如果 x === 0,则须要判断 + 0 和 -0,则能够间接应用 1/+0 === Infinity 和 1/-0 === -Infinity 来进行判断
return x !== 0 || 1 / x === 1 / y;
}
// x !== y 的状况下,只须要判断是否为 NaN,如果 x!==x,则阐明 x 是 NaN,同理 y 也一样
// x 和 y 同时为 NaN 时,返回 true
return x !== x && y !== y;
};
手写节流函数
函数节流是指规定一个单位工夫,在这个单位工夫内,只能有一次触发事件的回调函数执行,如果在同一个单位工夫内某事件被触发屡次,只有一次能失效。节流能够应用在 scroll 函数的事件监听上,通过事件节流来升高事件调用的频率。
// 函数节流的实现;
function throttle(fn, delay) {let curTime = Date.now();
return function() {
let context = this,
args = arguments,
nowTime = Date.now();
// 如果两次工夫距离超过了指定工夫,则执行函数。if (nowTime - curTime >= delay) {curTime = Date.now();
return fn.apply(context, args);
}
};
}
实现 Event(event bus)
event bus 既是 node 中各个模块的基石,又是前端组件通信的依赖伎俩之一,同时波及了订阅 - 公布设计模式,是十分重要的根底。
简略版:
class EventEmeitter {constructor() {this._events = this._events || new Map(); // 贮存事件 / 回调键值对
this._maxListeners = this._maxListeners || 10; // 设立监听下限
}
}
// 触发名为 type 的事件
EventEmeitter.prototype.emit = function(type, ...args) {
let handler;
// 从贮存事件键值对的 this._events 中获取对应事件回调函数
handler = this._events.get(type);
if (args.length > 0) {handler.apply(this, args);
} else {handler.call(this);
}
return true;
};
// 监听名为 type 的事件
EventEmeitter.prototype.addListener = function(type, fn) {
// 将 type 事件以及对应的 fn 函数放入 this._events 中贮存
if (!this._events.get(type)) {this._events.set(type, fn);
}
};
面试版:
class EventEmeitter {constructor() {this._events = this._events || new Map(); // 贮存事件 / 回调键值对
this._maxListeners = this._maxListeners || 10; // 设立监听下限
}
}
// 触发名为 type 的事件
EventEmeitter.prototype.emit = function(type, ...args) {
let handler;
// 从贮存事件键值对的 this._events 中获取对应事件回调函数
handler = this._events.get(type);
if (args.length > 0) {handler.apply(this, args);
} else {handler.call(this);
}
return true;
};
// 监听名为 type 的事件
EventEmeitter.prototype.addListener = function(type, fn) {
// 将 type 事件以及对应的 fn 函数放入 this._events 中贮存
if (!this._events.get(type)) {this._events.set(type, fn);
}
};
// 触发名为 type 的事件
EventEmeitter.prototype.emit = function(type, ...args) {
let handler;
handler = this._events.get(type);
if (Array.isArray(handler)) {
// 如果是一个数组阐明有多个监听者, 须要顺次此触发外面的函数
for (let i = 0; i < handler.length; i++) {if (args.length > 0) {handler[i].apply(this, args);
} else {handler[i].call(this);
}
}
} else {
// 单个函数的状况咱们间接触发即可
if (args.length > 0) {handler.apply(this, args);
} else {handler.call(this);
}
}
return true;
};
// 监听名为 type 的事件
EventEmeitter.prototype.addListener = function(type, fn) {const handler = this._events.get(type); // 获取对应事件名称的函数清单
if (!handler) {this._events.set(type, fn);
} else if (handler && typeof handler === "function") {
// 如果 handler 是函数阐明只有一个监听者
this._events.set(type, [handler, fn]); // 多个监听者咱们须要用数组贮存
} else {handler.push(fn); // 曾经有多个监听者, 那么间接往数组里 push 函数即可
}
};
EventEmeitter.prototype.removeListener = function(type, fn) {const handler = this._events.get(type); // 获取对应事件名称的函数清单
// 如果是函数, 阐明只被监听了一次
if (handler && typeof handler === "function") {this._events.delete(type, fn);
} else {
let postion;
// 如果 handler 是数组, 阐明被监听屡次要找到对应的函数
for (let i = 0; i < handler.length; i++) {if (handler[i] === fn) {postion = i;} else {postion = -1;}
}
// 如果找到匹配的函数, 从数组中革除
if (postion !== -1) {
// 找到数组对应的地位, 间接革除此回调
handler.splice(postion, 1);
// 如果革除后只有一个函数, 那么勾销数组, 以函数模式保留
if (handler.length === 1) {this._events.set(type, handler[0]);
}
} else {return this;}
}
};
实现具体过程和思路见实现 event
实现数组元素求和
- arr=[1,2,3,4,5,6,7,8,9,10],求和
let arr=[1,2,3,4,5,6,7,8,9,10]
let sum = arr.reduce((total,i) => total += i,0);
console.log(sum);
- arr=[1,2,3,[[4,5],6],7,8,9],求和
var = arr=[1,2,3,[[4,5],6],7,8,9]
let arr= arr.toString().split(',').reduce((total,i) => total += Number(i),0);
console.log(arr);
递归实现:
let arr = [1, 2, 3, 4, 5, 6]
function add(arr) {if (arr.length == 1) return arr[0]
return arr[0] + add(arr.slice(1))
}
console.log(add(arr)) // 21
实现类的继承
实现类的继承 - 简版
类的继承在几年前是重点内容,有 n 种继承形式各有优劣,es6 遍及后越来越不重要,那么多种写法有点『回字有四样写法』的意思,如果还想深刻了解的去看红宝书即可,咱们目前只实现一种最现实的继承形式。
// 寄生组合继承
function Parent(name) {this.name = name}
Parent.prototype.say = function() {console.log(this.name + ` say`);
}
Parent.prototype.play = function() {console.log(this.name + ` play`);
}
function Child(name, parent) {
// 将父类的构造函数绑定在子类上
Parent.call(this, parent)
this.name = name
}
/**
1. 这一步不必 Child.prototype = Parent.prototype 的起因是怕共享内存,批改父类原型对象就会影响子类
2. 不必 Child.prototype = new Parent()的起因是会调用 2 次父类的构造方法(另一次是 call),会存在一份多余的父类实例属性
3. Object.create 是创立了父类原型的正本,与父类原型齐全隔离
*/
Child.prototype = Object.create(Parent.prototype);
Child.prototype.say = function() {console.log(this.name + ` say`);
}
// 留神记得把子类的结构指向子类自身
Child.prototype.constructor = Child;
// 测试
var parent = new Parent('parent');
parent.say()
var child = new Child('child');
child.say()
child.play(); // 继承父类的办法
ES5 实现继承 - 具体
第一种形式是借助 call 实现继承
function Parent1(){this.name = 'parent1';}
function Child1(){Parent1.call(this);
this.type = 'child1'
}
console.log(new Child1);
这样写的时候子类尽管可能拿到父类的属性值,然而问题是父类中一旦存在办法那么子类无奈继承。那么引出上面的办法
第二种形式借助原型链实现继承:
function Parent2() {
this.name = 'parent2';
this.play = [1, 2, 3]
}
function Child2() {this.type = 'child2';}
Child2.prototype = new Parent2();
console.log(new Child2());
看似没有问题,父类的办法和属性都可能拜访,但实际上有一个潜在的有余。举个例子:
var s1 = new Child2();
var s2 = new Child2();
s1.play.push(4);
console.log(s1.play, s2.play); // [1,2,3,4] [1,2,3,4]
明明我只扭转了 s1 的 play 属性,为什么 s2 也跟着变了呢?很简略,因为两个实例应用的是同一个原型对象
第三种形式:将前两种组合:
function Parent3 () {
this.name = 'parent3';
this.play = [1, 2, 3];
}
function Child3() {Parent3.call(this);
this.type = 'child3';
}
Child3.prototype = new Parent3();
var s3 = new Child3();
var s4 = new Child3();
s3.play.push(4);
console.log(s3.play, s4.play); // [1,2,3,4] [1,2,3]
之前的问题都得以解决。然而这里又徒增了一个新问题,那就是 Parent3 的构造函数会多执行了一次(
Child3.prototype = new Parent3()
;)。这是咱们不愿看到的。那么如何解决这个问题?
第四种形式: 组合继承的优化 1
function Parent4 () {
this.name = 'parent4';
this.play = [1, 2, 3];
}
function Child4() {Parent4.call(this);
this.type = 'child4';
}
Child4.prototype = Parent4.prototype;
这里让将父类原型对象间接给到子类,父类构造函数只执行一次,而且父类属性和办法均能拜访,然而咱们来测试一下
var s3 = new Child4();
var s4 = new Child4();
console.log(s3)
子类实例的构造函数是 Parent4,显然这是不对的,应该是 Child4。
第五种形式(最举荐应用):优化 2
function Parent5 () {
this.name = 'parent5';
this.play = [1, 2, 3];
}
function Child5() {Parent5.call(this);
this.type = 'child5';
}
Child5.prototype = Object.create(Parent5.prototype);
Child5.prototype.constructor = Child5;
这是最举荐的一种形式,靠近完满的继承。
实现 Array.of 办法
Array.of()
办法用于将一组值,转换为数组
- 这个办法的次要目标,是补救数组构造函数
Array()
的有余。因为参数个数的不同,会导致Array()
的行为有差别。 Array.of()
基本上能够用来代替Array()
或new Array()
,并且不存在因为参数不同而导致的重载。它的行为十分对立
Array.of(3, 11, 8) // [3,11,8]
Array.of(3) // [3]
Array.of(3).length // 1
实现
function ArrayOf(){return [].slice.call(arguments);
}
实现深拷贝
简洁版本
简略版:
const newObj = JSON.parse(JSON.stringify(oldObj));
局限性:
- 他无奈实现对函数、RegExp 等非凡对象的克隆
- 会摈弃对象的
constructo
r, 所有的构造函数会指向Object
- 对象有循环援用, 会报错
面试简版
function deepClone(obj) {
// 如果是 值类型 或 null,则间接 return
if(typeof obj !== 'object' || obj === null) {return obj}
// 定义后果对象
let copy = {}
// 如果对象是数组,则定义后果数组
if(obj.constructor === Array) {copy = []
}
// 遍历对象的 key
for(let key in obj) {
// 如果 key 是对象的自有属性
if(obj.hasOwnProperty(key)) {
// 递归调用深拷贝办法
copy[key] = deepClone(obj[key])
}
}
return copy
}
调用深拷贝办法,若属性为值类型,则间接返回;若属性为援用类型,则递归遍历。这就是咱们在解这一类题时的外围的办法。
进阶版
- 解决拷贝循环援用问题
- 解决拷贝对应原型问题
// 递归拷贝 (类型判断)
function deepClone(value,hash = new WeakMap){ // 弱援用,不必 map,weakMap 更适合一点
// null 和 undefiend 是不须要拷贝的
if(value == null){return value;}
if(value instanceof RegExp) {return new RegExp(value) }
if(value instanceof Date) {return new Date(value) }
// 函数是不须要拷贝
if(typeof value != 'object') return value;
let obj = new value.constructor(); // [] {}
// 阐明是一个对象类型
if(hash.get(value)){return hash.get(value)
}
hash.set(value,obj);
for(let key in value){ // in 会遍历以后对象上的属性 和 __proto__指代的属性
// 补拷贝 对象的__proto__上的属性
if(value.hasOwnProperty(key)){
// 如果值还有可能是对象 就持续拷贝
obj[key] = deepClone(value[key],hash);
}
}
return obj
// 辨别对象和数组 Object.prototype.toString.call
}
// test
var o = {};
o.x = o;
var o1 = deepClone(o); // 如果这个对象拷贝过了 就返回那个拷贝的后果就能够了
console.log(o1);
实现残缺的深拷贝
1. 简易版及问题
JSON.parse(JSON.stringify());
预计这个 api 能笼罩大多数的利用场景,没错,谈到深拷贝,我第一个想到的也是它。然而实际上,对于某些严格的场景来说,这个办法是有微小的坑的。问题如下:
- 无奈解决
循环援用
的问题。举个例子:
const a = {val:2};
a.target = a;
拷贝
a
会呈现零碎栈溢出,因为呈现了有限递归的状况。
- 无奈拷贝一些非凡的对象,诸如
RegExp, Date, Set, Map
等 - 无奈拷贝
函数
(划重点)。
因而这个 api 先 pass 掉,咱们从新写一个深拷贝,简易版如下:
const deepClone = (target) => {if (typeof target === 'object' && target !== null) {const cloneTarget = Array.isArray(target) ? []: {};
for (let prop in target) {if (target.hasOwnProperty(prop)) {cloneTarget[prop] = deepClone(target[prop]);
}
}
return cloneTarget;
} else {return target;}
}
当初,咱们以刚刚发现的三个问题为导向,一步步来欠缺、优化咱们的深拷贝代码。
2. 解决循环援用
当初问题如下:
let obj = {val : 100};
obj.target = obj;
deepClone(obj);// 报错: RangeError: Maximum call stack size exceeded
这就是循环援用。咱们怎么来解决这个问题呢?
创立一个 Map。记录下曾经拷贝过的对象,如果说曾经拷贝过,那间接返回它行了。
const isObject = (target) => (typeof target === 'object' || typeof target === 'function') && target !== null;
const deepClone = (target, map = new Map()) => {if(map.get(target))
return target;
if (isObject(target)) {map.set(target, true);
const cloneTarget = Array.isArray(target) ? []: {};
for (let prop in target) {if (target.hasOwnProperty(prop)) {cloneTarget[prop] = deepClone(target[prop],map);
}
}
return cloneTarget;
} else {return target;}
}
当初来试一试:
const a = {val:2};
a.target = a;
let newA = deepClone(a);
console.log(newA)//{val: 2, target: { val: 2, target: [Circular] } }
如同是没有问题了, 拷贝也实现了。但还是有一个潜在的坑, 就是 map 上的 key 和 map 形成了强援用关系,这是相当危险的。我给你解释一下与之绝对的弱援用的概念你就明确了
在计算机程序设计中,弱援用与强援用绝对,
被弱援用的对象能够在任何时候被回收,而对于强援用来说,只有这个强援用还在,那么对象无奈被回收。拿下面的例子说,map 和 a 始终是强援用的关系,在程序完结之前,a 所占的内存空间始终不会被开释。
怎么解决这个问题?
很简略,让 map 的 key 和 map 形成弱援用即可。ES6 给咱们提供了这样的数据结构,它的名字叫 WeakMap,它是一种非凡的 Map, 其中的键是弱援用的。其键必须是对象,而值能够是任意的
略微革新一下即可:
const deepClone = (target, map = new WeakMap()) => {//...}
3. 拷贝非凡对象
可持续遍历
对于非凡的对象,咱们应用以下形式来甄别:
Object.prototype.toString.call(obj);
梳理一下对于可遍历对象会有什么后果:
["object Map"]
["object Set"]
["object Array"]
["object Object"]
["object Arguments"]
以这些不同的字符串为根据,咱们就能够胜利地甄别这些对象。
const getType = Object.prototype.toString.call(obj);
const canTraverse = {'[object Map]': true,
'[object Set]': true,
'[object Array]': true,
'[object Object]': true,
'[object Arguments]': true,
};
const deepClone = (target, map = new Map()) => {if(!isObject(target))
return target;
let type = getType(target);
let cloneTarget;
if(!canTraverse[type]) {
// 解决不能遍历的对象
return;
}else {
// 这波操作相当要害,能够保障对象的原型不失落!let ctor = target.prototype;
cloneTarget = new ctor();}
if(map.get(target))
return target;
map.put(target, true);
if(type === mapTag) {
// 解决 Map
target.forEach((item, key) => {cloneTarget.set(deepClone(key), deepClone(item));
})
}
if(type === setTag) {
// 解决 Set
target.forEach(item => {target.add(deepClone(item));
})
}
// 解决数组和对象
for (let prop in target) {if (target.hasOwnProperty(prop)) {cloneTarget[prop] = deepClone(target[prop]);
}
}
return cloneTarget;
}
不可遍历的对象
const boolTag = '[object Boolean]';
const numberTag = '[object Number]';
const stringTag = '[object String]';
const dateTag = '[object Date]';
const errorTag = '[object Error]';
const regexpTag = '[object RegExp]';
const funcTag = '[object Function]';
对于不可遍历的对象,不同的对象有不同的解决。
const handleRegExp = (target) => {const { source, flags} = target;
return new target.constructor(source, flags);
}
const handleFunc = (target) => {// 待会的重点局部}
const handleNotTraverse = (target, tag) => {
const Ctor = targe.constructor;
switch(tag) {
case boolTag:
case numberTag:
case stringTag:
case errorTag:
case dateTag:
return new Ctor(target);
case regexpTag:
return handleRegExp(target);
case funcTag:
return handleFunc(target);
default:
return new Ctor(target);
}
}
4. 拷贝函数
- 尽管函数也是对象,然而它过于非凡,咱们独自把它拿进去拆解。
- 提到函数,在 JS 种有两种函数,一种是一般函数,另一种是箭头函数。每个一般函数都是
- Function 的实例,而箭头函数不是任何类的实例,每次调用都是不一样的援用。那咱们只须要
- 解决一般函数的状况,箭头函数间接返回它自身就好了。
那么如何来辨别两者呢?
答案是: 利用原型。箭头函数是不存在原型的。
const handleFunc = (func) => {
// 箭头函数间接返回本身
if(!func.prototype) return func;
const bodyReg = /(?<={)(.|\n)+(?=})/m;
const paramReg = /(?<=\().+(?=\)\s+{)/;
const funcString = func.toString();
// 别离匹配 函数参数 和 函数体
const param = paramReg.exec(funcString);
const body = bodyReg.exec(funcString);
if(!body) return null;
if (param) {const paramArr = param[0].split(',');
return new Function(...paramArr, body[0]);
} else {return new Function(body[0]);
}
}
5. 残缺代码展现
const getType = obj => Object.prototype.toString.call(obj);
const isObject = (target) => (typeof target === 'object' || typeof target === 'function') && target !== null;
const canTraverse = {'[object Map]': true,
'[object Set]': true,
'[object Array]': true,
'[object Object]': true,
'[object Arguments]': true,
};
const mapTag = '[object Map]';
const setTag = '[object Set]';
const boolTag = '[object Boolean]';
const numberTag = '[object Number]';
const stringTag = '[object String]';
const symbolTag = '[object Symbol]';
const dateTag = '[object Date]';
const errorTag = '[object Error]';
const regexpTag = '[object RegExp]';
const funcTag = '[object Function]';
const handleRegExp = (target) => {const { source, flags} = target;
return new target.constructor(source, flags);
}
const handleFunc = (func) => {
// 箭头函数间接返回本身
if(!func.prototype) return func;
const bodyReg = /(?<={)(.|\n)+(?=})/m;
const paramReg = /(?<=\().+(?=\)\s+{)/;
const funcString = func.toString();
// 别离匹配 函数参数 和 函数体
const param = paramReg.exec(funcString);
const body = bodyReg.exec(funcString);
if(!body) return null;
if (param) {const paramArr = param[0].split(',');
return new Function(...paramArr, body[0]);
} else {return new Function(body[0]);
}
}
const handleNotTraverse = (target, tag) => {
const Ctor = target.constructor;
switch(tag) {
case boolTag:
return new Object(Boolean.prototype.valueOf.call(target));
case numberTag:
return new Object(Number.prototype.valueOf.call(target));
case stringTag:
return new Object(String.prototype.valueOf.call(target));
case symbolTag:
return new Object(Symbol.prototype.valueOf.call(target));
case errorTag:
case dateTag:
return new Ctor(target);
case regexpTag:
return handleRegExp(target);
case funcTag:
return handleFunc(target);
default:
return new Ctor(target);
}
}
const deepClone = (target, map = new WeakMap()) => {if(!isObject(target))
return target;
let type = getType(target);
let cloneTarget;
if(!canTraverse[type]) {
// 解决不能遍历的对象
return handleNotTraverse(target, type);
}else {
// 这波操作相当要害,能够保障对象的原型不失落!let ctor = target.constructor;
cloneTarget = new ctor();}
if(map.get(target))
return target;
map.set(target, true);
if(type === mapTag) {
// 解决 Map
target.forEach((item, key) => {cloneTarget.set(deepClone(key, map), deepClone(item, map));
})
}
if(type === setTag) {
// 解决 Set
target.forEach(item => {cloneTarget.add(deepClone(item, map));
})
}
// 解决数组和对象
for (let prop in target) {if (target.hasOwnProperty(prop)) {cloneTarget[prop] = deepClone(target[prop], map);
}
}
return cloneTarget;
}
实现 prototype 继承
所谓的原型链继承就是让新实例的原型等于父类的实例:
// 父办法
function SupperFunction(flag1){this.flag1 = flag1;}
// 子办法
function SubFunction(flag2){this.flag2 = flag2;}
// 父实例
var superInstance = new SupperFunction(true);
// 子继承父
SubFunction.prototype = superInstance;
// 子实例
var subInstance = new SubFunction(false);
// 子调用本人和父的属性
subInstance.flag1; // true
subInstance.flag2; // false
实现 AJAX 申请
AJAX 是 Asynchronous JavaScript and XML 的缩写,指的是通过 JavaScript 的 异步通信,从服务器获取 XML 文档从中提取数据,再更新以后网页的对应局部,而不必刷新整个网页。
创立 AJAX 申请的步骤:
- 创立一个 XMLHttpRequest 对象。
- 在这个对象上 应用 open 办法创立一个 HTTP 申请,open 办法所须要的参数是申请的办法、申请的地址、是否异步和用户的认证信息。
- 在发动申请前,能够为这个对象 增加一些信息和监听函数。比如说能够通过 setRequestHeader 办法来为申请增加头信息。还能够为这个对象增加一个状态监听函数。一个 XMLHttpRequest 对象一共有 5 个状态,当它的状态变动时会触发 onreadystatechange 事件,能够通过设置监听函数,来解决申请胜利后的后果。当对象的 readyState 变为 4 的时候,代表服务器返回的数据接管实现,这个时候能够通过判断申请的状态,如果状态是 2xx 或者 304 的话则代表返回失常。这个时候就能够通过 response 中的数据来对页面进行更新了。
- 当对象的属性和监听函数设置实现后,最初调 用 sent 办法来向服务器发动申请,能够传入参数作为发送的数据体。
const SERVER_URL = "/server";
let xhr = new XMLHttpRequest();
// 创立 Http 申请
xhr.open("GET", SERVER_URL, true);
// 设置状态监听函数
xhr.onreadystatechange = function() {if (this.readyState !== 4) return;
// 当申请胜利时
if (this.status === 200) {handle(this.response);
} else {console.error(this.statusText);
}
};
// 设置申请失败时的监听函数
xhr.onerror = function() {console.error(this.statusText);
};
// 设置申请头信息
xhr.responseType = "json";
xhr.setRequestHeader("Accept", "application/json");
// 发送 Http 申请
xhr.send(null);
实现 async/await
剖析
// generator 生成器 生成迭代器 iterator
// 默认这样写的类数组是不能被迭代的,短少迭代办法
let likeArray = {'0': 1, '1': 2, '2': 3, '3': 4, length: 4}
// // 应用迭代器使得能够开展数组
// // Symbol 有很多元编程办法,能够改 js 自身性能
// likeArray[Symbol.iterator] = function () {// // 迭代器是一个对象 对象中有 next 办法 每次调用 next 都须要返回一个对象 {value,done}
// let index = 0
// return {// next: ()=>{
// // 会主动调用这个办法
// console.log('index',index)
// return {
// // this 指向 likeArray
// value: this[index],
// done: index++ === this.length
// }
// }
// }
// }
// let arr = [...likeArray]
// console.log('arr', arr)
// 应用生成器返回迭代器
// likeArray[Symbol.iterator] = function *() {
// let index = 0
// while (index != this.length) {// yield this[index++]
// }
// }
// let arr = [...likeArray]
// console.log('arr', arr)
// 生成器 碰到 yield 就会暂停
// function *read(params) {
// yield 1;
// yield 2;
// }
// 生成器返回的是迭代器
// let it = read()
// console.log(it.next())
// console.log(it.next())
// console.log(it.next())
// 通过 generator 来优化 promise(promise 的毛病是不停的链式调用)const fs = require('fs')
const path = require('path')
// const co = require('co') // 帮咱们执行 generator
const promisify = fn=>{return (...args)=>{return new Promise((resolve,reject)=>{fn(...args, (err,data)=>{if(err) {reject(err)
}
resolve(data)
})
})
}
}
// promise 化
let asyncReadFile = promisify(fs.readFile)
function * read() {let content1 = yield asyncReadFile(path.join(__dirname,'./data/name.txt'),'utf8')
let content2 = yield asyncReadFile(path.join(__dirname,'./data/' + content1),'utf8')
return content2
}
// 这样写太繁琐 须要借助 co 来实现
// let re = read()
// let {value,done} = re.next()
// value.then(data=>{
// // 除了第一次传参没有意义外 剩下的传参都赋予了上一次的返回值
// let {value,done} = re.next(data)
// value.then(d=>{// let {value,done} = re.next(d)
// console.log(value,done)
// })
// }).catch(err=>{// re.throw(err) // 手动抛出谬误 能够被 try catch 捕捉
// })
// 实现 co 原理
function co(it) {// it 迭代器
return new Promise((resolve,reject)=>{
// 异步迭代 须要依据函数来实现
function next(data) {
// 递归得有停止条件
let {value,done} = it.next(data)
if(done) {resolve(value) // 间接让 promise 变成胜利 用以后返回的后果
} else {// Promise.resolve(value).then(data=>{// next(data)
// }).catch(err=>{// reject(err)
// })
// 简写
Promise.resolve(value).then(next,reject)
}
}
// 首次调用
next()})
}
co(read()).then(d=>{console.log(d)
}).catch(err=>{console.log(err,'--')
})
整体看一下构造
function asyncToGenerator(generatorFunc) {return function() {const gen = generatorFunc.apply(this, arguments)
return new Promise((resolve, reject) => {function step(key, arg) {
let generatorResult
try {generatorResult = gen[key](arg)
} catch (error) {return reject(error)
}
const {value, done} = generatorResult
if (done) {return resolve(value)
} else {return Promise.resolve(value).then(val => step('next', val), err => step('throw', err))
}
}
step("next")
})
}
}
剖析
function asyncToGenerator(generatorFunc) {
// 返回的是一个新的函数
return function() {
// 先调用 generator 函数 生成迭代器
// 对应 var gen = testG()
const gen = generatorFunc.apply(this, arguments)
// 返回一个 promise 因为内部是用.then 的形式 或者 await 的形式去应用这个函数的返回值的
// var test = asyncToGenerator(testG)
// test().then(res => console.log(res))
return new Promise((resolve, reject) => {
// 外部定义一个 step 函数 用来一步一步的跨过 yield 的妨碍
// key 有 next 和 throw 两种取值,别离对应了 gen 的 next 和 throw 办法
// arg 参数则是用来把 promise resolve 进去的值交给下一个 yield
function step(key, arg) {
let generatorResult
// 这个办法须要包裹在 try catch 中
// 如果报错了 就把 promise 给 reject 掉 内部通过.catch 能够获取到谬误
try {generatorResult = gen[key](arg)
} catch (error) {return reject(error)
}
// gen.next() 失去的后果是一个 { value, done} 的构造
const {value, done} = generatorResult
if (done) {
// 如果曾经实现了 就间接 resolve 这个 promise
// 这个 done 是在最初一次调用 next 后才会为 true
// 以本文的例子来说 此时的后果是 {done: true, value: 'success'}
// 这个 value 也就是 generator 函数最初的返回值
return resolve(value)
} else {// 除了最初完结的时候外,每次调用 gen.next()
// 其实是返回 {value: Promise, done: false} 的构造,// 这里要留神的是 Promise.resolve 能够承受一个 promise 为参数
// 并且这个 promise 参数被 resolve 的时候,这个 then 才会被调用
return Promise.resolve(
// 这个 value 对应的是 yield 前面的 promise
value
).then(
// value 这个 promise 被 resove 的时候,就会执行 next
// 并且只有 done 不是 true 的时候 就会递归的往下解开 promise
// 对应 gen.next().value.then(value => {// gen.next(value).value.then(value2 => {// gen.next()
//
// // 此时 done 为 true 了 整个 promise 被 resolve 了
// // 最内部的 test().then(res => console.log(res))的 then 就开始执行了
// })
// })
function onResolve(val) {step("next", val)
},
// 如果 promise 被 reject 了 就再次进入 step 函数
// 不同的是,这次的 try catch 中调用的是 gen.throw(err)
// 那么天然就被 catch 到 而后把 promise 给 reject 掉啦
function onReject(err) {step("throw", err)
},
)
}
}
step("next")
})
}
}