关于java:java线程池ThreadPoolExecutor源码分析

37次阅读

共计 10350 个字符,预计需要花费 26 分钟才能阅读完成。

入口

入口就是线程池执行工作的办法

/**
     * Executes the given task sometime in the future.  The task
     * may execute in a new thread or in an existing pooled thread.
     *
     * If the task cannot be submitted for execution, either because this
     * executor has been shutdown or because its capacity has been reached,
     * the task is handled by the current {@code RejectedExecutionHandler}.
     *
     * @param command the task to execute
     * @throws RejectedExecutionException at discretion of
     *         {@code RejectedExecutionHandler}, if the task
     *         cannot be accepted for execution
     * @throws NullPointerException if {@code command} is null
     */
    public void execute(Runnable command) { // 入口
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn't, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
        int c = ctl.get();
        
        // 申请数量小于最小数量
        if (workerCountOf(c) < corePoolSize) {if (addWorker(command, true))
                return;
            c = ctl.get();}


        // 申请数量小于阻塞队列容量
        if (isRunning(c) && workQueue.offer(command)) { // 入阻塞队列
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        } // 申请数量小于最大线程数量
        else if (!addWorker(command, false))
            reject(command);
    }

分了好几种状况,按以后并发申请数量的大小来分类:

  1. 小于最小数量
  2. 小于阻塞队列容量
  3. 小于最大数量

小于最小数量的状况

入口

代码地位

代码阐明

// 申请数量小于最小数量
        if (workerCountOf(c) < corePoolSize) {if (addWorker(command, true)) // 创立新的线程,并且增加新线程到线程池
                return;
            c = ctl.get();}

创立新的线程,并且增加到线程池

外围步骤

  1. 创立新的线程
  2. 增加新线程到线程池
  3. 执行 Worker 线程
/**
     * 创立新的线程,并且增加新线程到线程池
     * 
     * ---
     * Checks if a new worker can be added with respect to current
     * pool state and the given bound (either core or maximum). If so,
     * the worker count is adjusted accordingly, and, if possible, a
     * new worker is created and started, running firstTask as its
     * first task. This method returns false if the pool is stopped or
     * eligible to shut down. It also returns false if the thread
     * factory fails to create a thread when asked.  If the thread
     * creation fails, either due to the thread factory returning
     * null, or due to an exception (typically OutOfMemoryError in
     * Thread.start()), we roll back cleanly.
     *
     * @param firstTask the task the new thread should run first (or
     * null if none). Workers are created with an initial first task
     * (in method execute()) to bypass queuing when there are fewer
     * than corePoolSize threads (in which case we always start one),
     * or when the queue is full (in which case we must bypass queue).
     * Initially idle threads are usually created via
     * prestartCoreThread or to replace other dying workers.
     *
     * @param core if true use corePoolSize as bound, else
     * maximumPoolSize. (A boolean indicator is used here rather than a
     * value to ensure reads of fresh values after checking other pool
     * state).
     * @return true if successful
     */
    private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        for (;;) {int c = ctl.get();
            int rs = runStateOf(c);


            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;


            for (;;) {int wc = workerCountOf(c);
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }


        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            // 创立新的线程
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());


                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        // 增加新线程到线程池
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {mainLock.unlock();
                }
                if (workerAdded) {
                    // 执行 Worker 线程:留神,这里只是执行 Worker 线程
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }

那业务线程到底在哪里执行?

下面的代码,只是执行了 Worker 线程,然而并没有执行业务线程。那业务线程,到底在哪里执行呢?

在 Worker 线程里的 run 办法里执行。

来看代码,这里是 Worker 线程的 run 办法

/** Delegates main run loop to outer runWorker  */
        public void run() {
            // 执行业务线程
            runWorker(this);
        }

外围步骤

  1. 从阻塞队列获取业务线程
  2. 执行业务线程
/**
     * 执行业务线程
     * 
     * ---
     * Main worker run loop.  Repeatedly gets tasks from queue and
     * executes them, while coping with a number of issues:
     *
     * 1. We may start out with an initial task, in which case we
     * don't need to get the first one. Otherwise, as long as pool is
     * running, we get tasks from getTask. If it returns null then the
     * worker exits due to changed pool state or configuration
     * parameters.  Other exits result from exception throws in
     * external code, in which case completedAbruptly holds, which
     * usually leads processWorkerExit to replace this thread.
     *
     * 2. Before running any task, the lock is acquired to prevent
     * other pool interrupts while the task is executing, and then we
     * ensure that unless pool is stopping, this thread does not have
     * its interrupt set.
     *
     * 3. Each task run is preceded by a call to beforeExecute, which
     * might throw an exception, in which case we cause thread to die
     * (breaking loop with completedAbruptly true) without processing
     * the task.
     *
     * 4. Assuming beforeExecute completes normally, we run the task,
     * gathering any of its thrown exceptions to send to afterExecute.
     * We separately handle RuntimeException, Error (both of which the
     * specs guarantee that we trap) and arbitrary Throwables.
     * Because we cannot rethrow Throwables within Runnable.run, we
     * wrap them within Errors on the way out (to the thread's
     * UncaughtExceptionHandler).  Any thrown exception also
     * conservatively causes thread to die.
     *
     * 5. After task.run completes, we call afterExecute, which may
     * also throw an exception, which will also cause thread to
     * die. According to JLS Sec 14.20, this exception is the one that
     * will be in effect even if task.run throws.
     *
     * The net effect of the exception mechanics is that afterExecute
     * and the thread's UncaughtExceptionHandler have as accurate
     * information as we can provide about any problems encountered by
     * user code.
     *
     * @param w the worker
     */
    final void runWorker(Worker w) {Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            // 从阻塞队列里获取业务线程:精确的说,这里有 2 种状况,//1.Worker 线程被创立的时候,会持有业务线程,所以 Worker 线程第一次被执行的时候,是间接获取本人曾经持有的业务线程。执行实现之后,会被置为 null,示意曾经被解决。//2. 除了这个业务线程,其余业务线程都是从阻塞队列获取。而且是循环获取,说白了,其实就是有一个中央不停的往阻塞队列写数据(业务线程),相当于生产者;而后,Worker 线程这里会不停的生产数据,相当于消费者。典型的生产者消费者模式。while (task != null || (task = getTask()) != null) {w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        // 执行业务线程
                        task.run();} catch (RuntimeException x) {thrown = x; throw x;} catch (Error x) {thrown = x; throw x;} catch (Throwable x) {thrown = x; throw new Error(x);
                    } finally {afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();}
            }
            completedAbruptly = false;
        } finally {processWorkerExit(w, completedAbruptly);
        }
    }

从阻塞队列获取业务线程

/**
     * 从阻塞队列里获取业务线程
     *
     * ---
     * Performs blocking or timed wait for a task, depending on
     * current configuration settings, or returns null if this worker
     * must exit because of any of:
     * 1. There are more than maximumPoolSize workers (due to
     *    a call to setMaximumPoolSize).
     * 2. The pool is stopped.
     * 3. The pool is shutdown and the queue is empty.
     * 4. This worker timed out waiting for a task, and timed-out
     *    workers are subject to termination (that is,
     *    {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
     *    both before and after the timed wait, and if the queue is
     *    non-empty, this worker is not the last thread in the pool.
     *
     * @return task, or null if the worker must exit, in which case
     *         workerCount is decremented
     */
    private Runnable getTask() {boolean timedOut = false; // Did the last poll() time out?


        for (;;) {int c = ctl.get();
            int rs = runStateOf(c);


            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {decrementWorkerCount();
                return null;
            }


            int wc = workerCountOf(c);


            // Are workers subject to culling?
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;


            if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }


            try {
                // 从阻塞队列里获取业务线程
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                if (r != null)
                    return r;
                timedOut = true;
            } catch (InterruptedException retry) {timedOut = false;}
        }
    }

线程池是什么?

下面的步骤有提到增加新线程到线程池,那线程池具体是个什么货色呢?就是个汇合(Set)。

/**
     * Set containing all worker threads in pool. Accessed only when
     * holding mainLock.
     */
    private final HashSet<Worker> workers = new HashSet<Worker>(); // 线程池:Worker 就相当于是线程池里的线程

总结

  1. 线程池就是汇合
  2. 汇合里的元素就是线程

Worker 类实现了 Runnable。

阻塞队列的数据,从哪里来?

就是当并发申请数量大于最小数量,然而小于阻塞队列容量的时候,就会把数据 (即业务线程) 写到阻塞队列。

阻塞队列

阻塞队列长这个样子

/**
     * The queue used for holding tasks and handing off to worker
     * threads.  We do not require that workQueue.poll() returning
     * null necessarily means that workQueue.isEmpty(), so rely
     * solely on isEmpty to see if the queue is empty (which we must
     * do for example when deciding whether to transition from
     * SHUTDOWN to TIDYING).  This accommodates special-purpose
     * queues such as DelayQueues for which poll() is allowed to
     * return null even if it may later return non-null when delays
     * expire.
     */
    private final BlockingQueue<Runnable> workQueue;

其实就是一个阻塞队列数据结构,个别是数组阻塞队列(ArrayBlockingQueue)。

数据元素是业务线程。

外围类 -Worker 线程

留神,Worker 线程也是一个线程,它实现了 Runnable 接口

其次,它持有了 2 个外围对象:

  1. 业务线程

创立 Worker 线程的时候,业务线程也会作为构造方法的入参

  1. 线程池里的线程

新线程是如何创立的?在创立 Worker 对象的时候,会创立新线程

线程新线程的代码:留神,创立线程构造方法的入参是 Worker 本人,因为方才 Worker 把本人 (j 即 this 对象) 作为入参。

所以,Worker 持有的 thread 就是它本人。所以,上面代码执行 thread 的时候,就是在执行 Worker 的 run 办法。

总结

线程和线程池是最重要的数据,流程的外围,就是围绕线程池和线程池里的线程。

留神,线程池里的线程是工作线程,其实实质就是 Worker:Worker 的作用就是,一直从阻塞队列生产数据。

还有一个线程是业务线程:业务线程的作用就是咱们本人的业务逻辑。存储业务线程的中央是阻塞队列。阻塞队列的数据生产之后,数据就没了——大白话就是,业务线程属于长期数据,阻塞队列也是长期存储业务线程。实质是因为业务线程的生命周期很短,就是以后申请完结了,业务线程就会被删除。

而,线程池以及线程池里的工作线程,生命周期则比拟久。一个工作线程创立之后,就始终存在,次要作用就是始终不停从阻塞队列生产数据——说白了,其实就是一个工作线程,能够解决多个业务线程。即解决完一个,接着解决下一个。

而且,工作线程并没有偿还的操作。什么意思呢?就是工作线程是一个线程,始终在循环解决业务线程,并没有相似数据库连接池的用完偿还的操作。因为不须要。

所以,线程池的外围步骤

  1. 创立工作线程,增加到工作线程线程池
  2. 执行工作线程,不停的解决业务线程

留神,没有偿还工作线程到工作线程线程池的操作。

既然不须要偿还,那为什么还要线程池呢?因为须要计算工作线程的数量。

小于阻塞队列容量的状况

入口

// 申请数量小于阻塞队列容量
        if (isRunning(c) && workQueue.offer(command)) { // 入阻塞队列
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);

生产者消费者模式

这里是典型的生产者消费者模式,

  1. 在这里会一直的生产数据

实质就是写数据。即把业务线程写到阻塞队列。

  1. Worker 线程会一直的生产数据

实质是读数据。即从阻塞队列读业务线程。

数据结构

阻塞队列。

小于最大数量的状况

入口

留神,这里的 addWorker 办法和后面最小数量是同一个办法。惟一的一点点区别是,第二个入参不一样,第二个入参的作用是用来标记是否是最小数量。

// 申请数量小于最大线程数量
        else if (!addWorker(command, false))
            reject(command);

外围步骤和最小数量齐全一样,都是

  1. 创立新的线程
  2. 增加新线程到线程池
  3. 执行工作线程

参考

https://www.cnblogs.com/vivot…

正文完
 0