共计 3407 个字符,预计需要花费 9 分钟才能阅读完成。
目录
记录二叉树的基本操作 DEMO
1、创立一个二叉树类
2、而后创立二叉树的节点
记录二叉树的基本操作 DEMO
1、创立一个二叉树类
这里束缚了泛型只能为实现了 Comparable 这个接口的类型。
/**
* @author JackHui
* @version BinaryTree.java, 2020 年 03 月 05 日 12:45
*/
public class BinaryTree<T extends Comparable> {
// 树根
BinaryTreeNode root;
public boolean deleteData(T data) {if (root.data.equals(data)) {
root = null;
return true;
}
return root.deleteNode(data);
}
public T frontSearch(T data) {return (T) root.frontSearch(data);
}
public T midSearch(T data) {return (T) root.midSearch(data);
}
public T rearSearch(T data) {return (T) root.rearSearch(data);
}
public void frontEach() {this.root.frontEach();
}
public void midEach() {this.root.midEach();
}
public void rearEach() {this.root.rearEach();
}
public BinaryTreeNode getRoot() {return root;}
public void setRoot(BinaryTreeNode root) {this.root = root;}
}
2、而后创立二叉树的节点
package binarytree;
/**
* @author JackHui
* @version BinaryTreeNode.java, 2020 年 03 月 06 日 10:24
*/
public class BinaryTreeNode<T extends Comparable> {
T data;
BinaryTreeNode lChild;
BinaryTreeNode rChild;
public BinaryTreeNode(T data) {this.data = data;}
// 先序遍历
public void frontEach() {System.out.print(this.data + "\t");
if (lChild != null) {lChild.frontEach();
}
if (rChild != null) {rChild.frontEach();
}
}
// 中序遍历
public void midEach() {if (lChild != null) {lChild.frontEach();
}
System.out.print(this.data + "\t");
if (rChild != null) {rChild.frontEach();
}
}
// 后序遍历
public void rearEach() {if (lChild != null) {lChild.frontEach();
}
if (rChild != null) {rChild.frontEach();
}
System.out.print(this.data + "\t");
}
// 先序查找
public T frontSearch(T data) {
T target = null;
System.out.println("[先序遍历]以后遍历到的元素:" + this.data + "\t 查找的元素:" + data + "\t" + (this.data.compareTo(data) == 0 ? "查找到元素:" + data : ""));
if (this.data.compareTo(data) == 0) {return data;} else {if (lChild != null && (target = (T) lChild.frontSearch(data)) != null) {return target;}
if (rChild != null && (target = (T) rChild.frontSearch(data)) != null) {return target;}
}
return target;
}
// 中序查找
public T midSearch(T data) {
T target = null;
if (lChild != null && (target = (T) lChild.midSearch(data)) != null) {return target;}
System.out.println("[中序遍历]以后遍历到的元素:" + this.data + "\t 查找的元素:" + data + "\t" + (this.data.compareTo(data) == 0 ? "查找到元素:" + data : ""));
if (this.data.compareTo(data) == 0) {return data;} else {if (rChild != null && (target = (T) rChild.midSearch(data)) != null) {return target;}
}
return target;
}
// 后序查找
public T rearSearch(T data) {
T target = null;
if (lChild != null && (target = (T) lChild.rearSearch(data)) != null) {return target;}
if (rChild != null && (target = (T) rChild.rearSearch(data)) != null) {return target;}
System.out.println("[后续遍历]以后遍历到的元素:" + this.data + "\t 查找的元素:" + data + "\t" + (this.data.compareTo(data) == 0 ? "查找到元素:" + data : ""));
if (this.data.compareTo(data) == 0) {return data;}
return target;
}
// 依据值删除节点
public boolean deleteNode(T data) {System.out.println("[节点删除]以后遍历到的父节点:" + this.data + "\t" + "匹配的节点数据:" + data);
// 判断左子树是否匹配
if (this.lChild != null && (this.lChild.data.compareTo(data) == 0)) {System.out.println("[节点删除]以后遍历到的父节点:" + this.data + "\t" + "匹配的节点数据:" + data + "\t 节点删除胜利!");
this.lChild = null;
return true;
} else if (this.rChild != null && (this.rChild.data.compareTo(data) == 0)) {System.out.println("[节点删除]以后遍历到的父节点:" + this.data + "\t" + "匹配的节点数据:" + data + "\t 节点删除胜利!");
this.rChild = null;
return true;
}
if (this.lChild != null && this.lChild.deleteNode(data)) {return true;}
if (this.rChild != null && this.rChild.deleteNode(data)) {return true;}
return false;
}
public T getData() {return data;}
public void setData(T data) {this.data = data;}
public BinaryTreeNode getlChild() {return lChild;}
public void setlChild(BinaryTreeNode lChild) {this.lChild = lChild;}
public BinaryTreeNode getrChild() {return rChild;}
public void setrChild(BinaryTreeNode rChild) {this.rChild = rChild;}
}
到此这篇对于 JAVA 二叉树的基本操作 DEMO 的文章就介绍到这了
正文完