关于java:一次消息消费服务的内存泄漏排查小记

40次阅读

共计 8374 个字符,预计需要花费 21 分钟才能阅读完成。

线上有一个音讯生产服务 xxx-consumer,应用 spring-kafka 框架,主线程批量从生产队列(kafka)拉取交易系统生产的音讯,而后提交到子线程池中挨个解决生产。

public abstract class AbstractMessageDispatchListener implements
        BatchAcknowledgingMessageListener<String, Msg>, ApplicationListener<ApplicationReadyEvent> {
​
    private ThreadPoolExecutor executor;
​
    public abstract MessageWorker chooseWorker(ConsumerRecord<String, Msg> data);
​
    @Override
    public void onMessage(List<ConsumerRecord<String, Msg>> datas, Acknowledgment acknowledgment) {List<Future<?>> futureList = new ArrayList<>(datas.size());
        try {CountDownLatch countDownLatch = new CountDownLatch(datas.size());
            for (ConsumerRecord<String, Msg> data : datas) {Future<?> future = executor.submit(new Worker(data, countDownLatch));
                futureList.add(future);
            }
​
            countDownLatch.await(20000L - 2000, TimeUnit.MILLISECONDS);
            long countDownLatchCount = countDownLatch.getCount();
            if (countDownLatchCount > 0) {return;}
            acknowledgment.acknowledge();} catch (Exception e) {logger.error("onMessage error", e);
        } finally {for (Future<?> future : futureList) {if (future.isDone() || future.isCancelled()) {continue;}
                future.cancel(true);
            }
        }
    }
​
    @Override
    public void onApplicationEvent(ApplicationReadyEvent event) {ThreadFactoryBuilder builder = new ThreadFactoryBuilder();
        builder.setNameFormat(this.getClass().getSimpleName() + "-pool-%d");
        builder.setDaemon(false);
        executor = new ThreadPoolExecutor(12,
                12 * 2,
                60L,
                TimeUnit.SECONDS,
                new ArrayBlockingQueue<>(100),
                builder.build());
    }
​
    private class Worker implements Runnable {
        private ConsumerRecord<String, Msg> data;
        private CountDownLatch countDownLatch;
​
        Worker(ConsumerRecord<String, Msg> data, CountDownLatch countDownLatch) {
            this.data = data;
            this.countDownLatch = countDownLatch;
        }
​
        @Override
        public void run() {
            try {MessageWorker worker = chooseWorker(data);
                worker.work(data.value());
            } finally {countDownLatch.countDown();
            }
        }
    }
}

1. 问题背景

有一天早上 xxx-consumer 服务呈现大量报警,人工排查发现 30w+ 的音讯未解决,业务日志失常,gc 日志有大量 Full gc,初步判断因为 Full gc 导致音讯解决慢,大量的音讯积压。

2. 堆栈剖析

查看了近一个月的 JVM 内存信息,发现老年代内存无奈被回收(9 月 22 号的降落是因为服务有一次上线重启),初步判断产生了内存透露。

通过 <jmap -dump:format=b,file=/home/work/app/xxx-consumer/logs/jmap_dump.hprof -F> 命令导出内存快照,应用 Memory Analyzer 解析内存快照文件 jmap_dump.hprof,发现有很显著的内存透露提醒:

进一步查看线程细节,发现创立了大量的 ThreadLocalScope 对象且循环援用:

同时咱们也看到了分布式追踪(dd-trace-java)jar 包中的 FakeSpan 类,初步判断是 dd-trace-java 中自研扩大的 kafka 插件存在内存透露 bug。

3. 代码剖析

持续查看 dd-trace-java 中 kafka 插件的代码,其解决流程如下:

第一批音讯

  1. (SpringKafkaConsumerInstrumentation:L22)BatchAcknowledgingMessageListener.onMessage 进入时,主线程会创立一个 scope00=ThreadLocalScope(Type_BatchMessageListener_Value,toRestore=null)
  2. (ExecutorInstrumentation:L21L47)音讯被 submit 到线程池中解决时,子线程会创立一个 scope10=ThreadLocalScope(Type_BatchMessageListener_Value,toRestore=null)
  3. (SpringKafkaConsumerInstrumentation:L68)子线程解决音讯时(ConsumerRecord.value),会创立一个 scope11=ThreadLocalScope(Type_ConsumberRecord_Value,toRestore=scope10)
  4. (ExecutorInstrumentation:L54)子线程解决完音讯后,执行 scope10.close(),而 scopeManager.tlsScope.get()=scope11,命中 ThreadLocalScope:L19,scope10 和 scope11 均无奈被 GC
  5. (SpringKafkaConsumerInstrumentation:L42)BatchAcknowledgingMessageListener.onMessage 退出时,主线程会执行 scope00.close(),scope00 会被 GC

 第二批音讯

  1. (SpringKafkaConsumerInstrumentation:L22)BatchAcknowledgingMessageListener.onMessage 进入时,主线程会创立一个 scope01=ThreadLocalScope(Type_BatchMessageListener_Value,toRestore=null)
  2. (ExecutorInstrumentation:L21L47)音讯被 submit 到线程池中解决时,子线程会创立一个 scope12=ThreadLocalScope(Type_BatchMessageListener_Value,toRestore=scope11)
  3. (SpringKafkaConsumerInstrumentation:L68)子线程解决音讯时(ConsumerRecord.value),会创立一个 scope13=ThreadLocalScope(Type_ConsumberRecord_Value,toRestore=scope12)
  4. (ExecutorInstrumentation:L54)子线程解决完音讯后,执行 scope12.close(),而 scopeManager.tlsScope.get()=scope13,命中 ThreadLocalScope:L19,scope12 和 scope13 均无奈被 GC
  5. (SpringKafkaConsumerInstrumentation:L42)BatchAcknowledgingMessageListener.onMessage 退出时,主线程会执行 scope01.close(),scope01 会被 GC

 从上能够看到,主线程创立的 ThreadLocalScope 能被正确 GC,而线程池中创立的 ThreadLocalScope 被循环援用,无奈被正确 GC,从而造成内存透露。

@AutoService(Instrumenter.class)
public final class SpringKafkaConsumerInstrumentation extends Instrumenter.Configurable {
 
    @Override
    public AgentBuilder apply(final AgentBuilder agentBuilder) {
        return agentBuilder
                .type(hasSuperType(named("org.springframework.kafka.listener.BatchAcknowledgingMessageListener")))
                .transform(DDAdvice.create().advice(isMethod().and(isPublic()).and(named("onMessage")),
                        BatchMessageListenerAdvice.class.getName()))
                .type(named("org.apache.kafka.clients.consumer.ConsumerRecord"))
                .transform(DDAdvice.create().advice(isMethod().and(isPublic()).and(named("value")),
                        RecoredValueAdvice.class.getName()))
                .asDecorator();}
 
    public static class BatchMessageListenerAdvice {@Advice.OnMethodEnter(suppress = Throwable.class)
        public static Scope before() {FakeSpan span = new FakeSpan();
            span.setKind(FakeSpan.Type_BatchMessageListener_Value);
            Scope scope = GlobalTracer.get().scopeManager().activate(span, false);
            return scope;
        }
 
        @Advice.OnMethodExit(suppress = Throwable.class)
        public static void after(@Advice.Enter Scope scope) {while (true) {Span span = GlobalTracer.get().activeSpan();
                if (span != null && span instanceof FakeSpan) {FakeSpan fakeSpan = (FakeSpan) span;
                    if (fakeSpan.getKind().equals(FakeSpan.Type_ConsumberRecord_Value)) {GlobalTracer.get().scopeManager().active().close();} else {break;}
                } else {break;}
            }
            if (scope != null) {scope.close();
            }
        }
    }
 
    public static class RecoredValueAdvice {@Advice.OnMethodEnter(suppress = Throwable.class)
        public static void before(@Advice.This ConsumerRecord record) {Span activeSpan = GlobalTracer.get().activeSpan();
            if (activeSpan instanceof FakeSpan) {FakeSpan proxy = (FakeSpan) activeSpan;
                if (proxy.getKind().equals(FakeSpan.Type_ConsumberRecord_Value)) {GlobalTracer.get().scopeManager().active().close();
                    activeSpan = GlobalTracer.get().activeSpan();
                    if (activeSpan instanceof FakeSpan) {proxy = (FakeSpan) activeSpan;
                    }
                }
 
                if (proxy.getKind().equals(FakeSpan.Type_BatchMessageListener_Value)) {final SpanContext spanContext = TracingKafkaUtils.extractSecond(record.headers(), GlobalTracer.get());
                    if (spanContext != null) {FakeSpan consumerProxy = new FakeSpan();
                        consumerProxy.setContext(spanContext);
                        consumerProxy.setKind(FakeSpan.Type_ConsumberRecord_Value);
                        GlobalTracer.get().scopeManager().activate(consumerProxy, false);
                    }
                }
            }
        }
    }
}
@AutoService(Instrumenter.class)
public final class ExecutorInstrumentation extends Instrumenter.Configurable {
 
    @Override
    public AgentBuilder apply(final AgentBuilder agentBuilder) {
        return agentBuilder
                .type(not(isInterface()).and(hasSuperType(named(ExecutorService.class.getName()))))
                .transform(DDAdvice.create().advice(named("submit").and(takesArgument(0, Runnable.class)),
                        SubmitTracedRunnableAdvice.class.getName()))
                .asDecorator();}
 
 
    public static class SubmitTracedRunnableAdvice {@Advice.OnMethodEnter(suppress = Throwable.class)
        public static TracedRunnable wrapJob(
                @Advice.This Object dis,
                @Advice.Argument(value = 0, readOnly = false) Runnable task) {if (task != null && (!dis.getClass().getName().startsWith("slick.util.AsyncExecutor"))) {task = new TracedRunnable(task, GlobalTracer.get());
                return (TracedRunnable) task;
            }
            return null;
        }
    }
 
    public static class TracedRunnable implements Runnable {
        private final Runnable delegate;
        private final Span span;
        private final Tracer tracer;
 
        public TracedRunnable(Runnable delegate, Tracer tracer) {
            this.delegate = delegate;
            this.tracer = tracer;
            if (tracer != null) {this.span = tracer.activeSpan();
            } else {this.span = null;}
        }
 
        @Override
        public void run() {
            Scope scope = null;
            if (span != null && tracer != null) {scope = tracer.scopeManager().activate(span, false);
            }
 
            try {delegate.run();
            } finally {if (scope != null) {scope.close();
                }
            }
        }
    }
}
public class ThreadLocalScopeManager implements ScopeManager {final ThreadLocal<ThreadLocalScope> tlsScope = new ThreadLocal<ThreadLocalScope>();
 
    @Override
    public Scope activate(Span span, boolean finishOnClose) {return new ThreadLocalScope(this, span, finishOnClose);
    }
 
    @Override
    public Scope active() {return tlsScope.get();
    }
}
public class ThreadLocalScope implements Scope {
    private final ThreadLocalScopeManager scopeManager;
    private final Span wrapped;
    private final boolean finishOnClose;
    private final ThreadLocalScope toRestore;
 
    ThreadLocalScope(ThreadLocalScopeManager scopeManager, Span wrapped, boolean finishOnClose) {
        this.scopeManager = scopeManager;
        this.wrapped = wrapped;
        this.finishOnClose = finishOnClose;
        this.toRestore = scopeManager.tlsScope.get();
        scopeManager.tlsScope.set(this);
    }
 
    @Override
    public void close() {if (scopeManager.tlsScope.get() != this) {
            // This shouldn't happen if users call methods in the expected order. Bail out.
            return;
        }
 
        if (finishOnClose) {wrapped.finish();
        }
 
        scopeManager.tlsScope.set(toRestore);
    }
 
    @Override
    public Span span() {return wrapped;}
}

End

RecoredValueAdvice 没有销毁本人创立的对象,而是寄希望于 BatchMessageListenerAdvice 去销毁。

但(SpringKafkaConsumerInstrumentation:L27)BatchAcknowledgingMessageListener.onMessage 退出时,只会 close 主线程创立的 ThreadLocalScope,不会 close 线程池中创立的 ThreadLocalScope,导致子线程创立的 ThreadLocalScope 被循环援用,无奈被正确 GC,从而造成内存透露。

正文完
 0