关于java:二叉搜索树排序二叉树树的遍历前序中序后序的代码实现

30次阅读

共计 3355 个字符,预计需要花费 9 分钟才能阅读完成。

// 二分查找
public class BST {

    private TreeNode root;
    
    public TreeNode getRoot() {return root;}

    public void setRoot(TreeNode root) {this.root = root;}
    
    // 每个树节点
    static class TreeNode {
        public int value;// 值
        public TreeNode left;
        public TreeNode right;
        
        public TreeNode(int value){this.value = value;}
    }
    
    // 查找办法
    public TreeNode get(int key){
        TreeNode current = root;
        while (current != null && current.value != key){if(key < current.value){current = current.left;} else if(key > current.value){current = current.right;}
        }
        
        return current == null ? null : current;
    
    }
    
    // insert 办法(插入)public void insert(int key){
        // 如果根节点为 null,就把 key 插入到根节点
        if(root == null){root = new TreeNode(key);
            return;
        }
        
        TreeNode current = root;
        TreeNode parent = null;// 要插入的地位的父亲
        
        while(true) {
            parent = current;
            // 如果要插入的 key 小于 根节点,则到右边查找
            if(key < parent.value){
                current = parent.left;
                // 如果根节点的左子树的 节点为 null,直接插入
                if(current == null){parent.left = new TreeNode(key);
                    return;
                }    
            }
            // 如果要插入的 key 大于 根节点,则到左边查找
            else if(key > parent.value){
                current = parent.right;
                if(current == null){parent.right = new TreeNode(key);
                    return;
                }
            }
            // 阐明以后存在的值曾经存在了
            else{return;}
        }
    }
    
    // 删除办法
    public boolean delete(int key){
        TreeNode parent = root; // 要删除节点的父节点
        TreeNode current = root;
        
        boolean isLeftChild = false; // 是不是左节点
        // 删除之前先找 这个节点
        while(current != null && current.value != key){
            parent = current;
            if(current.value > key){
                isLeftChild = true;
                current = current.left;
            } else {
                isLeftChild = false;
                current = current.right;
            }
        }
        
        // 没有找到对应的数据
        if(current == null){return false;}
        // Case1 1:if node to be delete has no Children
        if(current.left == null && current.right == null){if(current == root){root = null;} else if(isLeftChild) {parent.left = null;} else {parent.right = null;}
        }

        // Case1 2:if node to be delete has one Children
        else if(current.right == null){if(current == root){root = current.left;} else if(isLeftChild){parent.left = current.left;} else {parent.right = current.left;}
            
        }
        else if(current.left == null){if(current ==root){root = current.right;} else if(isLeftChild){parent.left = current.right;} else {parent.right = current.right;}
        }
        // Case1 3:if node to be delete has two Children;  current.left != null && current.right != null
        else {TreeNode successor = getSuccessor(current);
            if(current == root){root = successor;} else if(isLeftChild){parent.left = successor;}else{parent.right = successor;}
            
            successor.left = current.left;
        }
        return true;
    }
    
    // 这个是用来找右子树上面最小的节点.
    private TreeNode getSuccessor(TreeNode node){
        TreeNode successor = null;
        TreeNode successorParent = null;
        TreeNode current = node.right;
        
        // 找到最小的节点,终止条件是:节点为 null
        while(current != null){
            successorParent = successor;
            successor = current;
            current = current.left;
        }
        
        if(successor != node.right){
            successorParent.left = successor.right;
            successor.right = node.right;
        }
        return successor;
        
    }

    
    // 遍历办法
    
    /**
     * Pre-order Traversal:先拜访节点本人,然年后拜访左子树,最初在拜访右子树
     */
    public static void preOrderTraversal(TreeNode root){if(root == null){return;}
        
        System.out.println(root.value);
        preOrderTraversal(root.left);
        preOrderTraversal(root.right);
        
    }
    
    /**
     * In-order Traversal:先拜访左子树上的节点,在拜访本人,最初再拜访右子树上的节点
     * 
     * 遍历进去饿的数据,是排好程序的
     */
    public static void inOrderTraversal(TreeNode root){if(root == null){return;}
        inOrderTraversal(root.left);
        System.out.println(root.value);
        inOrderTraversal(root.right);
        
    }
    /**
     * Post-order Traversal:先拜访左右子树,最初在拜访本人
     */
    public static void postOrderTraversal(TreeNode root){if(root == null){return;}
        postOrderTraversal(root.left);
        postOrderTraversal(root.right);
        System.out.println(root.value);
    }
    
    public static void main(String[] args) {
        // Test
        BST bst = new BST();
        
        bst.insert(50);
        bst.insert(36);
        bst.insert(88);
        bst.insert(77);
        
        BST.inOrderTraversal(bst.getRoot());
        System.out.println();
        BST.preOrderTraversal(bst.getRoot());
        System.out.println();
        BST.postOrderTraversal(bst.getRoot());
        
    }

正文完
 0