1.1 线程简介
多任务→多线程
过程 VS 线程
- 程序是指令和数据的有序汇合,是一个动态的概念。
- 过程是程序的一次执行过程,是一个动静的概念。
- 过程中至多有一个线程,线程是CPU调度和执行的根本单位。
1.2 线程创立
三种创立形式:
- 继承Thread类
- 实现Runnable接口
- 实现Callable接口(理解)
1.2.1 继承Thread类
创立线程形式一:继承Thread类→重写run()办法→调用start()启动线程
//留神,线程开启不肯定立刻执行,由CPU调度执行
public class TestThread1 extends Thread{
@Override
public void run() {
// run办法线程体
for(int i = 0;i < 20;i++) {
System.out.println("我在看代码—————"+i);
}
}
public static void main(String[] args) {
//main线程,主线程
TestThread1 testThread1 = new TestThread1();
//调用start()办法开启线程,交替执行
testThread1.start();
for(int i = 0;i < 20;i++) {
System.out.println("我在学习多线程—————"+i);
}
}
}
实现多线程同步下载图片
import java.io.File;
import java.net.URL;
import org.apache.commons.io.FileUtils;
public class TestThread2 extends Thread{
private String url,name; //网络图片地址,保留的文件名
public TestThread2(String url,String name) {
this.url = url;
this.name = name;
}
//下载图片线程执行体
@Override
public void run() {
WebDownloader webDownloader = new WebDownloader();
webDownloader.downloader(url, name);
System.out.println("下载了文件名为:"+name);
}
public static void main(String[] args) {
TestThread2 t1 = new TestThread2("https://pics6.baidu.com/feed/838ba61ea8d3fd1ffe50b135beb0651894ca5f6d.jpeg?token=34d0744ffdbbc1f2d6ddea302862b052","1.jpg");
TestThread2 t2 = new TestThread2("https://pics6.baidu.com/feed/838ba61ea8d3fd1ffe50b135beb0651894ca5f6d.jpeg?token=34d0744ffdbbc1f2d6ddea302862b052","2.jpg");
TestThread2 t3 = new TestThread2("https://pics6.baidu.com/feed/838ba61ea8d3fd1ffe50b135beb0651894ca5f6d.jpeg?token=34d0744ffdbbc1f2d6ddea302862b052","3.jpg"
t1.start();
t2.start();
t3.start();
}
}
//下载器
class WebDownloader{
//下载办法
public void downloader(String url,String name) {
try {
FileUtils.copyURLToFile(new URL(url), new File(name));
}catch (Exception e) {
e.printStackTrace();
System.out.println("IO异样,downloader办法呈现问题");
}
}
}
1.2.2 实现Runnable接口
创立线程形式二:实现Runnable接口→重写run()办法→调用start()启动线程(须要Runnable接口实现类)
public class TestThread3 implements Runnable{
@Override
public void run() {
// run办法线程体
for(int i = 0;i < 20;i++) {
System.out.println("我在看代码—————"+i);
}
}
public static void main(String[] args) {
//创立runnable接口的实现类对象
TestThread3 testThread3 = new TestThread3();
//创立线程对象,通过线程对象来开启线程,代理
// Thread thread = new Thread(testThread3);
// thread.start();
new Thread(testThread3).start();
for(int i = 0;i < 20;i++) {
System.out.println("我在学习多线程—————"+i);
}
}
}
import java.io.File;
import java.net.URL;
import org.apache.commons.io.FileUtils;
//练习Thread,实现多线程同步下载图片
public class TestThread2n implements Runnable{
private String url,name; //网络图片地址,保留的文件名
public TestThread2n(String url,String name) {
this.url = url;
this.name = name;
}
//下载图片线程执行体
@Override
public void run() {
WebDownloader1 webDownloader = new WebDownloader1();
webDownloader.downloader(url, name);
System.out.println("下载了文件名为:"+name);
}
public static void main(String[] args) {
TestThread2n t1 = new TestThread2n("https://pics6.baidu.com/feed/838ba61ea8d3fd1ffe50b135beb0651894ca5f6d.jpeg?token=34d0744ffdbbc1f2d6ddea302862b052","1.jpg");
TestThread2n t2 = new TestThread2n("https://pics6.baidu.com/feed/838ba61ea8d3fd1ffe50b135beb0651894ca5f6d.jpeg?token=34d0744ffdbbc1f2d6ddea302862b052","2.jpg");
TestThread2n t3 = new TestThread2n("https://pics6.baidu.com/feed/838ba61ea8d3fd1ffe50b135beb0651894ca5f6d.jpeg?token=34d0744ffdbbc1f2d6ddea302862b052","3.jpg");
new Thread(t1).start();
new Thread(t2).start();
new Thread(t3).start();
}
}
//下载器
class WebDownloader1{
//下载办法
public void downloader(String url,String name) {
try {
FileUtils.copyURLToFile(new URL(url), new File(name));
}catch (Exception e) {
e.printStackTrace();
System.out.println("IO异样,downloader办法呈现问题");
}
}
}
小结:
-
继承Thread类
- 子类继承Thread类具备多线程能力
- 启动线程:子类对象.start()
- 不倡议应用:防止OOP单继承局限性
-
实现Runnable接口
- 实现接口Runnable具备多线程能力
- 启动线程:传入指标对象+Thread对象.start()
- 举荐应用:防止单继承局限性,灵便不便,不便同一对象被多个线程应用
多个线程同时操作一个对象,买火车票的例子
//问题:多个线程操作同一个资源,线程不平安,数据错乱
public class TestThread4 implements Runnable{
//票数
private int ticketNum = 10;
@Override
public void run() {
while(true) {
if(ticketNum<=0) {
break;
}
try {
Thread.sleep(10);
} catch (Exception e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName()+"拿到了第"+ticketNum--+"张票");
}
}
public static void main(String[] args) {
TestThread4 ticket = new TestThread4();
new Thread(ticket,"小明").start();
new Thread(ticket,"老师").start();
new Thread(ticket,"黄牛党").start();
}
}
案例:龟兔赛跑
//模仿龟兔赛跑
public class Race implements Runnable{
//胜利者
private static String winner;
public static void main(String[] args) {
Race race = new Race();
new Thread(race,"兔子").start();
new Thread(race,"乌龟").start();
}
@Override
public void run() {
for(int i = 0; i <= 100;i++) {
//模仿兔子劳动
if("兔子".equals(Thread.currentThread().getName() )&& i%10==5) {
try {
Thread.sleep(56);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
if("乌龟".equals(Thread.currentThread().getName() )) {
try {
Thread.sleep(5);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//判断较量是否完结
boolean flag = gameOver(i);
//如果较量完结了,就进行程序
if(flag) {
break;
}
System.out.println(Thread.currentThread().getName()+"跑了"+i+"步");
}
}
//判断是否实现较量
private boolean gameOver(int steps) {
//判断是否有胜利者
if(winner!=null) {
return true;
}else {
if(steps==100) {
winner = Thread.currentThread().getName();
System.out.println("winner is "+winner);
return true;
}
}
return false;
}
}
1.2.3 实现Callable接口
创立线程形式三(理解即可):实现Callable接口(须要返回值类型)→重写call()办法(须要抛出异样)→创立指标对象→创立敞开服务
import java.io.File;
import java.net.URL;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import org.apache.commons.io.FileUtils;
//创立形式三:实现Callable接口
/*
* Callable的益处:
* 1.能够定义返回值
* 2.能够抛出异样
*/
public class TestCallable implements Callable<Boolean>{
private String url,name; //网络图片地址,保留的文件名
public TestCallable(String url,String name) {
this.url = url;
this.name = name;
}
//下载图片线程执行体
@Override
public Boolean call() {
WebDownloader webDownloader = new WebDownloader();
webDownloader.downloader(url, name);
System.out.println("下载了文件名为:"+name);
return true;
}
public static void main(String[] args) throws Exception {
TestCallable t1 = new TestCallable("https://pics6.baidu.com/feed/838ba61ea8d3fd1ffe50b135beb0651894ca5f6d.jpeg?token=34d0744ffdbbc1f2d6ddea302862b052","1.jpg");
TestCallable t2 = new TestCallable("https://pics6.baidu.com/feed/838ba61ea8d3fd1ffe50b135beb0651894ca5f6d.jpeg?token=34d0744ffdbbc1f2d6ddea302862b052","2.jpg");
TestCallable t3 = new TestCallable("https://pics6.baidu.com/feed/838ba61ea8d3fd1ffe50b135beb0651894ca5f6d.jpeg?token=34d0744ffdbbc1f2d6ddea302862b052","3.jpg");
//创立执行服务
ExecutorService ser = Executors.newFixedThreadPool(3);
//提交执行
Future<Boolean> r1 = ser.submit(t1);
Future<Boolean> r2 = ser.submit(t2);
Future<Boolean> r3 = ser.submit(t3);
//获取后果
boolean rs1 = r1.get();
boolean rs2 = r2.get();
boolean rs3 = r3.get();
System.out.println(rs1);
System.out.println(rs2);
System.out.println(rs3);
//敞开服务
ser.shutdown();
}
}
//下载器
class WebDownloader{
//下载办法
public void downloader(String url,String name) {
try {
FileUtils.copyURLToFile(new URL(url), new File(name));
}catch (Exception e) {
e.printStackTrace();
System.out.println("IO异样,downloader办法呈现问题");
}
}
}
Lamda表达式
语法:(parameters) -> expression 或 (parameters) ->{ statements; }
作用:简化代码,防止匿名外部类定义过多
Function Interface(函数式接口):只蕴含惟一一个形象办法
能够通过lamda表达式来创立函数式接口的对象
推导lambda表达式
public class TestLambda1 {
//3.动态外部类
static class Like2 implements ILike{
@Override
public void lambda() {
System.out.println("I like lambda2");
}
}
public static void main(String[] args) {
ILike like = new Like();
like.lambda();
like = new Like2();
like.lambda();
//4.部分外部类
class Like3 implements ILike{
@Override
public void lambda() {
System.out.println("I like lambda3");
}
}
like = new Like3();
like.lambda();
//5.匿名外部类,没有类的名称,必须借助接口或者父类
like = new ILike() {
@Override
public void lambda() {
System.out.println("I like lambda4");
}
};
like.lambda();
//6.用lambda简化
like = () -> {
System.out.println("I like lambda5");
};
like.lambda();
}
}
//1.定义一个函数式接口
interface ILike{
void lambda();
}
//2.实现类
class Like implements ILike{
@Override
public void lambda() {
System.out.println("I like lambda");
}
}
简化lambda表达式:1.省略参数类型 2.省略括号
动态代理
示例(婚庆公司)
public class StaticProxy {
public static void main(String[] args) {
You you = new You();
you.HappyMarry();
// new Thread(()->System.out.println("我爱你")).start();
// new WeddingCompany(new You()).HappyMarry();
//代理
WeddingCompany weddingCompany = new WeddingCompany(new You());
weddingCompany.HappyMarry();
}
}
interface Marry{
void HappyMarry();
}
//实在角色
class You implements Marry{
@Override
public void HappyMarry() {
System.out.println("结婚了,开心");
}
}
//代理角色
class WeddingCompany implements Marry{
private Marry target;
public WeddingCompany(Marry target) {
this.target = target;
}
@Override
public void HappyMarry() {
before();
this.target.HappyMarry(); //实在对象
after();
}
private void after() {
System.out.println("结婚之后,收尾款");
}
private void before() {
System.out.println("结婚之前,安排现场");
}
}
动态代理模式总结:
- 实在对象和代理对象都要实现同一个接口
- 代理对象代理实在对象
益处:
- 代理对象能够做很多实在对象做不了的事件
- 实在对象专一做本人的事件
1.3 线程状态
1.3.1 五大状态
1.3.2 线程进行
- 不举荐应用JDK提供的stop()、destroy()办法【已废除】
- 举荐线程本人停下来(倡议应用一标记位进行终止变量)
//测试stop
//1.倡议线程失常进行-->利用次数,不倡议死循环
//2.倡议应用标记位
//3.不要应用stop或者destroy等过期或者JDK不倡议应用的办法
public class TestStop implements Runnable{
private boolean flag = true;
public static void main(String[] args) {
TestStop testStop = new TestStop();
new Thread(testStop).start();
for(int i = 0; i < 1000; i++) {
System.out.println("main"+i);
if(i == 900) {
//调用stop()办法切换标记位,让线程进行
testStop.stop();
System.out.println("线程进行");
}
}
}
@Override
public void run() {
int i = 0;
while(flag) {
System.out.println("run ... Thread"+i++);
}
}
public void stop() {
this.flag = false;
}
}
1.3.3 线程休眠
sleep(毫秒)→就绪
每个对象有个锁,sleep不会开释锁
//模仿网络延时:放大问题的产生性
public class TestSleep implements Runnable{
//票数
private int ticketNum = 10;
@Override
public void run() {
while(true) {
if(ticketNum<=0) {
break;
}
//模仿延时
try {
Thread.sleep(100);
} catch (Exception e) {
e.printStackTrace();
} System.out.println(Thread.currentThread().getName()+"拿到了第"+ticketNum--+"张票");
}
}
public static void main(String[] args) {
TestSleep ticket = new TestSleep();
new Thread(ticket,"小明").start();
new Thread(ticket,"老师").start();
new Thread(ticket,"黄牛党").start();
}
}
import java.text.SimpleDateFormat;
import java.util.Date;
public class TestSleep2{
public static void main(String[] args) {
//模仿倒计时
try {
tenDown();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
//打印以后零碎工夫
Date startTime = new Date(System.currentTimeMillis());
while(true) {
try {
System.out.println(new SimpleDateFormat("HH:mm:ss").format(startTime));
Thread.sleep(1000);
startTime = new Date(System.currentTimeMillis()); //更新以后工夫
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
public static void tenDown() throws InterruptedException {
int num = 3;
while(true) {
Thread.sleep(1000);
System.out.println(num--);
if(num<=0) {
break;
}
}
}
}
1.3.4 线程礼让
Yield让以后线程暂停但不阻塞,转为就绪状态
礼让不肯定胜利
//测试礼让线程,礼让不肯定胜利
public class TestYield {
public static void main(String[] args) {
// TODO Auto-generated method stub
MyYield myYield = new MyYield();
new Thread(myYield,"a").start();
new Thread(myYield,"b").start();
}
}
class MyYield implements Runnable{
@Override
public void run() {
// TODO Auto-generated method stub
System.out.println(Thread.currentThread().getName()+"线程开始执行");
Thread.yield(); //礼让
System.out.println(Thread.currentThread().getName()+"线程进行执行");
}
}
1.3.5 线程强制执行
Join合并线程,待此线程执行实现后,再执行其余线程,其余线程阻塞(能够看作是插队)
//测试join办法
public class TestJoin implements Runnable{
public static void main(String[] args) throws InterruptedException {
//启动咱们的线程
TestJoin testJoin = new TestJoin();
Thread thread = new Thread(testJoin);
thread.start();
for (int i = 0; i < 500; i++) {
if(i==200) {
thread.join();//插队
}
System.out.println("main"+i);
}
}
@Override
public void run() {
for (int i = 0; i < 1000; i++) {
System.out.println("线程vip来了"+i);
}
}
}
1.3.6 线程优先级
优先高的不肯定先执行,默认是5
//测试线程的优先级
public class TestPriority{
public static void main(String[] args) {
//主线程默认优先级
System.out.println(Thread.currentThread().getName()+"--->"+Thread.currentThread().getPriority());
MyPriority myPriority = new MyPriority();
Thread t1 = new Thread(myPriority);
Thread t2 = new Thread(myPriority);
Thread t3 = new Thread(myPriority);
Thread t4 = new Thread(myPriority);
//先设置优先级,再启动
t1.start();
t2.setPriority(1);
t2.start();
t3.setPriority(4);
t3.start();
t4.setPriority(Thread.MAX_PRIORITY); //MAX_PRIORITY=10
t4.start();
}
}
class MyPriority implements Runnable{
@Override
public void run() { System.out.println(Thread.currentThread().getName()+"--->"+Thread.currentThread().getPriority());
}
}
1.3.7 守护(daemon)线程
线程分为用户线程和守护线程
虚拟机必须确保用户线程(如,后盾记录操作日志,监控内存,垃圾回收期待)执行结束,但不必期待守护线程执行结束
//测试守护线程
//上帝守护你
public class TestDaemon {
public static void main(String[] args) {
God god = new God();
You you = new You();
Thread thread = new Thread(god);
thread.setDaemon(true); //默认是false示意是用户线程,失常的线程都是用户线程
thread.start(); //守护线程启动
new Thread(you).start(); //用户线程启动
}
}
//上帝
class God implements Runnable{
@Override
public void run() {
while(true) {
System.out.println("上帝保佑着你");
}
}
}
//你
class You implements Runnable{
@Override
public void run() {
for (int i = 0; i < 36500; i++) {
System.out.println("开心活着");
}
System.out.println("====Good bye!====");
}
}
1.4 线程同步
多个线程操作同一资源(并发)
线程同步是一种期待机制,多个须要同时拜访同一对象的线程进图该对象的期待池造成队列,期待后面线程应用结束,下一线程再应用
造成条件:队列+锁(synchronized)
1.4.1 同步办法及同步块
三个不平安案例
1.不平安的买票
//不平安的买票(线程不平安)
public class UnsafeBuyTicket {
public static void main(String[] args) {
BuyTicket station = new BuyTicket();
new Thread(station,"苦逼的我").start();
new Thread(station,"牛逼的你们").start();
new Thread(station,"可恶的黄牛党").start();
}
}
class BuyTicket implements Runnable{
//票
private int ticketNum = 10;
boolean flag = true; //内部进行形式
@Override
public void run() {
//买票
while(flag) {
buy();
}
}
private void buy() {
if(ticketNum<=0) {
flag = false;
return;
}
try {
Thread.sleep(100);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
//买票
System.out.println(Thread.currentThread().getName()+"拿到"+ticketNum--);
}
}
2.不平安的取钱
//不平安的取钱(两个人)
public class UnsafeBank {
public static void main(String[] args) {
Account account = new Account(100,"结婚基金");
Drawing you = new Drawing(account,50,"你");
Drawing GF = new Drawing(account,100,"女朋友");
you.start();
GF.start();
}
}
//账户
class Account{
int money; //余额
String name; //卡名
public Account(int money, String name) {
super();
this.money = money;
this.name = name;
}
}
//银行:模仿取款
class Drawing extends Thread{
Account account;
//取了多少钱
int drawingMoney;
//当初手里有多少钱
int nowMoney;
public Drawing(Account account,int drawingMoney,String name) {
super(name);
this.account = account;
this.drawingMoney = drawingMoney;
}
//取钱
@Override
public void run() {
//判断有没有钱
if(account.money - drawingMoney < 0) {
System.out.println(Thread.currentThread().getName()+"钱不够,取不了");
return;
}
//放大问题的产生性
try {
Thread.sleep(100);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
//卡内余额 = 余额 - 取的钱
account.money = account.money - drawingMoney;
//你手里的钱
nowMoney = nowMoney + drawingMoney;
System.out.println(account.name+"余额为:"+account.money);
//Thread.currentThread() == this.getName()
System.out.println(this.getName()+"手里的钱:"+nowMoney);
}
}
3.不平安的汇合
//线程不平安的汇合
//增加到同一地位被笼罩
public class UnsafeList {
public static void main(String[] args) {
List<String> list = new ArrayList<String>();
for (int i = 0; i < 10000; i++) {
new Thread(()->{
list.add(Thread.currentThread().getName());
}).start();
}
System.out.println(list.size());
}
}
synchronized
同步办法:public synchronized void method(int args) { }
synchronized办法管制对“对象”的拜访,每个对象对象对应一把锁,每个synchronized办法都必须取得调用该办法的锁能力执行,否则线程会阻塞,办法一旦执行,就独占该锁,直到该办法返回才开释锁,前面被阻塞的线程能力取得这个锁,继续执行
同步块:synchronized(Obj) { }
Obj称为同步监视器
- Obj能够是任何对象,然而举荐应用共享资源作为同步监视器
- 同步办法中无需指定同步监视器,因为同步办法的同步监视器就是this
public void run() {
//锁的对象就是变动的量,须要增删改的对象
synchronized (account) {
//判断有没有钱
if(account.money - drawingMoney < 0) {
System.out.println(Thread.currentThread().getName()+"钱不够,取不了");
return;
}
//放大问题的产生性
try {
Thread.sleep(100);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
//卡内余额 = 余额 - 取的钱
account.money = account.money - drawingMoney;
}
//你手里的钱
nowMoney = nowMoney + drawingMoney;
System.out.println(account.name+"余额为:"+account.money);
//Thread.currentThread() == this.getName()
System.out.println(this.getName()+"手里的钱:"+nowMoney);
}
CopyOnWriteArrayList
JUC就是java.util .concurrent工具包的简称。这是一个解决线程的工具包,JDK 1.5开始呈现的。Callable接口也在JUC中。
import java.util.concurrent.CopyOnWriteArrayList;
//测试JUC平安类型的汇合
public class TestJUC {
public static void main(String[] args) {
CopyOnWriteArrayList<String> list = new CopyOnWriteArrayList<String>();
for(int i = 0; i < 10000; i++) {
new Thread(()->{
list.add(Thread.currentThread().getName());
}).start();
}
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
System.out.println(list.size());
}
}
1.4.2 死锁
多个线程各自占有一些共享资源,并且相互期待其余线程占有的资源能力运行,而导致两个或者多个线程都在期待对方开释资源,都进行执行的情景,某一同步块同时领有”两个以上对象的锁“时,就可能会产生”死锁“的问题
//死锁:多个线程相互抱着对方须要的资源,而后造成僵持
public class DeadLock {
public static void main(String[] args) {
Makeup g1 = new Makeup(0,"灰姑娘");
Makeup g2 = new Makeup(1,"白雪公主");
g1.start();
g2.start();
}
}
//口红
class Lipstick{
}
//镜子
class Mirror{
}
class Makeup extends Thread{
//须要的资源只有一份,用static来保障只有一份
static Lipstick lipstick = new Lipstick();
static Mirror mirror = new Mirror();
int choice; //抉择
String girlName; //抉择化妆品的人
Makeup(int choice,String girlName){
this.choice = choice;
this.girlName = girlName;
}
@Override
public void run() {
//化妆
try {
makeup();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
//化妆,相互持有对方的锁,就是须要拿到对方的资源
private void makeup() throws InterruptedException {
if(choice == 0) {
synchronized(lipstick) { //取得口红的锁
System.out.println(this.girlName+"取得口红的锁");
Thread.sleep(1000);
synchronized(mirror) {
System.out.println(this.girlName+"取得镜子的锁");
}
}
}else {
synchronized(mirror) { //取得口红的锁
System.out.println(this.girlName+"取得镜子的锁");
Thread.sleep(2000);
synchronized(lipstick) {
System.out.println(this.girlName+"取得口红的锁");
}
}
}
}
}
锁中锁(多个对象相互嵌套的锁)使多个线程相互抱着对方须要的资源,而后造成僵持
解决办法:锁离开写,不要同时占有多个资源
//化妆,相互持有对方的锁,就是须要拿到对方的资源
private void makeup() throws InterruptedException {
if(choice == 0) {
synchronized(lipstick) { //取得口红的锁
System.out.println(this.girlName+"取得口红的锁");
Thread.sleep(1000);
}
synchronized(mirror) {
System.out.println(this.girlName+"取得镜子的锁");
}
}else {
synchronized(mirror) { //取得口红的锁
System.out.println(this.girlName+"取得镜子的锁");
Thread.sleep(2000);
}
synchronized(lipstick) {
System.out.println(this.girlName+"取得口红的锁");
}
}
产生死锁的四个必要条件:
- 互斥条件
- 申请与放弃条件
- 不剥夺条件
- 循环期待条件
1.4.3 Lock锁
从JDK 5.0开始,Java提供了更弱小的线程同步机制——显式定义同步锁对象来实现同步。同步锁应用Lock对象充当,Lock锁也蕴含在JUC内
ReentrantLock(可重入锁)类实现了Lock,能够显式加锁、开释锁
应用格局:
Lock lock=new ReentrantLock();
lock.lock();
try{
//解决工作
}catch(Exception ex){
}finally{
lock.unlock(); //开释锁
}
测试Lock类(买票):
import java.util.concurrent.locks.ReentrantLock;
//测试Lock类
public class TestLock {
public static void main(String[] args) {
TestLock2 testLock2 = new TestLock2();
new Thread(testLock2).start();
new Thread(testLock2).start();
new Thread(testLock2).start();
}
}
class TestLock2 implements Runnable{
int ticketNum = 10;
//定义Lock锁
private final ReentrantLock lock = new ReentrantLock();
@Override
public void run() {
while(true) {
lock.lock();//加锁
try {
if(ticketNum > 0) {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
System.out.println(ticketNum--);
}else {
break;
}
}finally {
//解锁
lock.unlock();
}
}
}
}
synchronized与Lock比照
- Lock是显式锁(手动开启和敞开锁),synchronized是隐式锁,主动开释
- 应用Lock锁,JVM将破费较少的工夫来调度线程,性能更好。并且具备更好的扩展性(提供更多子类)
1.4.4 线程通信
线程通信办法:
留神:均是Object类的办法,都只能在同步办法或者同步代码块中应用,否则会抛出异样
生产者消费者问题
解决办法:
-
利用缓冲区解决:管程法
//测试生产者消费者模型-->利用缓冲区解决:管程法 //生产者,消费者,产品,缓冲区 public class TestPC { public static void main(String[] args) { SynContainer container = new SynContainer(); new Producer(container).start(); new Consumer(container).start(); } } //生产者 class Producer extends Thread{ SynContainer container; public Producer(SynContainer container) { this.container = container; } //生产 @Override public void run() { for (int i = 0; i < 100; i++) { container.push(new Chicken(i)); System.out.println("生产了第"+i+"只鸡"); } } } //消费者 class Consumer extends Thread{ SynContainer container; public Consumer(SynContainer container) { this.container = container; } //生产 @Override public void run() { for (int i = 0; i < 100; i++) { System.out.println("生产了第"+container.pop().id+"只鸡"); } } } //产品 class Chicken{ int id; //产品编号 public Chicken(int id) { this.id = id; } } //缓冲区 class SynContainer{ //须要一个容器大小 Chicken[] chickens = new Chicken[10]; //容器计数器 int count = 0; //生产者放入产品 public synchronized void push(Chicken chicken) { //如果容器满了,就须要期待消费者生产 if(count == chickens.length) { //告诉消费者生产,生产期待 try { this.wait(); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } } //如果没有满,咱们就须要丢入产品 chickens[count] = chicken; count++; //能够告诉消费者生产了 this.notifyAll(); } //消费者生产产品 public synchronized Chicken pop() { //判断是否生产 if(count==0) { //期待生产者生产 try { this.wait(); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } } //如果能够生产 count--; Chicken chicken = chickens[count]; //吃完了,告诉生产者生产 this.notifyAll(); return chicken; } }
-
利用标记位解决:信号灯法
package com.zhg.thread; //测试生产者消费者模型2-->利用标记位解决:信号灯法 public class TestPC2 { public static void main(String[] args) { TV tv = new TV(); new Player(tv).start(); new Watcher(tv).start(); } } //生产者-->演员 class Player extends Thread{ TV tv; public Player(TV tv) { this.tv = tv; } @Override public void run() { for (int i = 0; i < 20; i++) { if(i%2==0) { this.tv.play("高兴大本营"); }else { this.tv.play("广告"); } } } } //消费者-->观众 class Watcher extends Thread{ TV tv; public Watcher(TV tv) { this.tv = tv; } @Override public void run() { for (int i = 0; i < 20; i++) { tv.watch(); } } } //产品-->节目 class TV{ //演员表演,观众期待 T //观众观看,演员期待 F String voice;//表演的节目 boolean flag = true; //表演 public synchronized void play(String voice) { if(!flag) { try { this.wait(); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } } System.out.println("演员表演了:"+voice); //告诉观众观看 this.notifyAll(); //告诉唤醒 this.voice = voice; this.flag = !this.flag; } //观看 public synchronized void watch() { if(flag) { try { this.wait(); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } } System.out.println("观众观看了:"+voice); //告诉演员表演 this.notifyAll(); this.flag = !this.flag; } }
线程池
背景:常常创立和销毁,使用量特地大的资源,比方并发状况下的线程,对性能影响很大。
思路:提前创立好多个线程,放入线程池中,应用时间接获取,应用完放回池中。能够防止频繁创立销毁、实现反复利用。
益处:
- 进步响应速度
- 升高资源耗费
- 便于线程治理
JDK 5.0起提供了线程池相干API:ExecutorService和Executors
- ExecutorService:真正的线程池接口。
- Executor:工具类、线程池的工厂类,用于创立并返回不同类型的线程池。
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
//测试线程池
public class TestPool {
public static void main(String[] args) {
//1.创立服务,创立线程池
//newFixedThreadPool 参数为线程池大小
ExecutorService service = Executors.newFixedThreadPool(10);
service.execute(new MyThread());
service.execute(new MyThread());
service.execute(new MyThread());
service.execute(new MyThread());
//2.敞开连贯
service.shutdown();
}
}
class MyThread implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName());
}
}
发表回复