关于java:多线程详解

53次阅读

共计 21111 个字符,预计需要花费 53 分钟才能阅读完成。

1.1 线程简介

多任务→多线程

过程 VS 线程

  • 程序是指令和数据的有序汇合,是一个动态的概念。
  • 过程是程序的一次执行过程, 是一个动静的概念。
  • 过程中至多有一个线程,线程是 CPU 调度和执行的根本单位。

1.2 线程创立

三种创立形式:

  1. 继承 Thread 类
  2. 实现 Runnable 接口
  3. 实现 Callable 接口(理解)

1.2.1 继承 Thread 类

创立线程形式一:继承 Thread 类→重写 run()办法→调用 start()启动线程

// 留神,线程开启不肯定立刻执行,由 CPU 调度执行
public class TestThread1 extends Thread{
    @Override
    public void run() {
        // run 办法线程体
        for(int i = 0;i < 20;i++) {System.out.println("我在看代码—————"+i);
        }
    }
    public static void main(String[] args) {
        //main 线程,主线程
        TestThread1 testThread1 = new TestThread1();
        // 调用 start()办法开启线程,交替执行
        testThread1.start();
        for(int i = 0;i < 20;i++) {System.out.println("我在学习多线程—————"+i);
        }
    }    
}

实现多线程同步下载图片

import java.io.File;
import java.net.URL;
import org.apache.commons.io.FileUtils;
public class TestThread2 extends Thread{
    private String url,name; // 网络图片地址,保留的文件名
    public TestThread2(String url,String name) {
        this.url = url;
        this.name = name;
    }
    // 下载图片线程执行体
    @Override
    public void run() {WebDownloader webDownloader = new WebDownloader();
        webDownloader.downloader(url, name);
        System.out.println("下载了文件名为:"+name);
    }

    public static void main(String[] args) {TestThread2 t1 = new TestThread2("https://pics6.baidu.com/feed/838ba61ea8d3fd1ffe50b135beb0651894ca5f6d.jpeg?token=34d0744ffdbbc1f2d6ddea302862b052","1.jpg");
        TestThread2 t2 = new TestThread2("https://pics6.baidu.com/feed/838ba61ea8d3fd1ffe50b135beb0651894ca5f6d.jpeg?token=34d0744ffdbbc1f2d6ddea302862b052","2.jpg");
        TestThread2 t3 = new TestThread2("https://pics6.baidu.com/feed/838ba61ea8d3fd1ffe50b135beb0651894ca5f6d.jpeg?token=34d0744ffdbbc1f2d6ddea302862b052","3.jpg"
        t1.start();
        t2.start();
        t3.start();}
}
 // 下载器
class WebDownloader{
    // 下载办法
    public void downloader(String url,String name) {
        try {FileUtils.copyURLToFile(new URL(url), new File(name));
        }catch (Exception e) {e.printStackTrace();
            System.out.println("IO 异样,downloader 办法呈现问题");
        }
    }
}

1.2.2 实现 Runnable 接口

创立线程形式二:实现 Runnable 接口→重写 run()办法→调用 start()启动线程(须要 Runnable 接口实现类)

public class TestThread3 implements Runnable{
    @Override
    public void run() {
        // run 办法线程体
        for(int i = 0;i < 20;i++) {System.out.println("我在看代码—————"+i);
        }
    }
    public static void main(String[] args) {
        // 创立 runnable 接口的实现类对象
        TestThread3 testThread3 = new TestThread3();
        
        // 创立线程对象,通过线程对象来开启线程,代理
//        Thread thread = new Thread(testThread3);
//        thread.start();
        new Thread(testThread3).start();
        
        for(int i = 0;i < 20;i++) {System.out.println("我在学习多线程—————"+i);
        }
    }
}
import java.io.File;
import java.net.URL;
import org.apache.commons.io.FileUtils;
// 练习 Thread,实现多线程同步下载图片
public class TestThread2n implements Runnable{
    private String url,name; // 网络图片地址,保留的文件名
    public TestThread2n(String url,String name) {
        this.url = url;
        this.name = name;
    }
    // 下载图片线程执行体
    @Override
    public void run() {WebDownloader1 webDownloader = new WebDownloader1();
        webDownloader.downloader(url, name);
        System.out.println("下载了文件名为:"+name);
    }

    public static void main(String[] args) {TestThread2n t1 = new TestThread2n("https://pics6.baidu.com/feed/838ba61ea8d3fd1ffe50b135beb0651894ca5f6d.jpeg?token=34d0744ffdbbc1f2d6ddea302862b052","1.jpg");
        TestThread2n t2 = new TestThread2n("https://pics6.baidu.com/feed/838ba61ea8d3fd1ffe50b135beb0651894ca5f6d.jpeg?token=34d0744ffdbbc1f2d6ddea302862b052","2.jpg");
        TestThread2n t3 = new TestThread2n("https://pics6.baidu.com/feed/838ba61ea8d3fd1ffe50b135beb0651894ca5f6d.jpeg?token=34d0744ffdbbc1f2d6ddea302862b052","3.jpg");
        
        new Thread(t1).start();
        new Thread(t2).start();
        new Thread(t3).start();}

}
// 下载器
class WebDownloader1{
    // 下载办法
    public void downloader(String url,String name) {
        try {FileUtils.copyURLToFile(new URL(url), new File(name));
        }catch (Exception e) {e.printStackTrace();
            System.out.println("IO 异样,downloader 办法呈现问题");
        }
    }
}

小结:

  • 继承 Thread 类

    • 子类继承 Thread 类具备多线程能力
    • 启动线程:子类对象.start()
    • 不倡议应用:防止 OOP 单继承局限性
  • 实现 Runnable 接口

    • 实现接口 Runnable 具备多线程能力
    • 启动线程:传入指标对象 +Thread 对象.start()
    • 举荐应用:防止单继承局限性,灵便不便,不便同一对象被多个线程应用

多个线程同时操作一个对象,买火车票的例子

// 问题:多个线程操作同一个资源,线程不平安,数据错乱
public class TestThread4 implements Runnable{
    // 票数
    private int ticketNum = 10;
    @Override
    public void run() {while(true) {if(ticketNum<=0) {break;}
            try {Thread.sleep(10);
            } catch (Exception e) {e.printStackTrace();
            }
            System.out.println(Thread.currentThread().getName()+"拿到了第"+ticketNum--+"张票");
        }    
    }
    public static void main(String[] args) {TestThread4 ticket = new TestThread4();
        new Thread(ticket,"小明").start();
        new Thread(ticket,"老师").start();
        new Thread(ticket,"黄牛党").start();}
}

案例:龟兔赛跑

// 模仿龟兔赛跑
public class Race implements Runnable{
    // 胜利者
    private static String winner; 
    public static void main(String[] args) {Race race = new Race();
        new Thread(race,"兔子").start();
        new Thread(race,"乌龟").start();}
    @Override
    public void run() {for(int i = 0; i <= 100;i++) {
            // 模仿兔子劳动
            if("兔子".equals(Thread.currentThread().getName())&& i%10==5) {
                try {Thread.sleep(56);
                } catch (InterruptedException e) {e.printStackTrace();
                }
            }
            if("乌龟".equals(Thread.currentThread().getName())) {
                try {Thread.sleep(5);
                } catch (InterruptedException e) {e.printStackTrace();
                }
            }
            // 判断较量是否完结
            boolean flag = gameOver(i);
            // 如果较量完结了,就进行程序
            if(flag) {break;}
            System.out.println(Thread.currentThread().getName()+"跑了"+i+"步");
        }    
    }
    // 判断是否实现较量
    private boolean gameOver(int steps) {
        // 判断是否有胜利者
        if(winner!=null) {return true;}else {if(steps==100) {winner = Thread.currentThread().getName();
                System.out.println("winner is"+winner);
                return true;
            }
        }
        return false;
    }
}

1.2.3 实现 Callable 接口

创立线程形式三(理解即可):实现 Callable 接口(须要返回值类型)→重写 call()办法(须要抛出异样)→创立指标对象→创立敞开服务

import java.io.File;
import java.net.URL;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import org.apache.commons.io.FileUtils;

// 创立形式三:实现 Callable 接口
/*
 * Callable 的益处:* 1. 能够定义返回值
 * 2. 能够抛出异样
 */
public class TestCallable implements Callable<Boolean>{
    private String url,name; // 网络图片地址,保留的文件名
    public TestCallable(String url,String name) {
        this.url = url;
        this.name = name;
    }
    // 下载图片线程执行体
    @Override
    public Boolean call() {WebDownloader webDownloader = new WebDownloader();
        webDownloader.downloader(url, name);
        System.out.println("下载了文件名为:"+name);
        return true;
    }

    public static void main(String[] args) throws Exception {TestCallable t1 = new TestCallable("https://pics6.baidu.com/feed/838ba61ea8d3fd1ffe50b135beb0651894ca5f6d.jpeg?token=34d0744ffdbbc1f2d6ddea302862b052","1.jpg");
        TestCallable t2 = new TestCallable("https://pics6.baidu.com/feed/838ba61ea8d3fd1ffe50b135beb0651894ca5f6d.jpeg?token=34d0744ffdbbc1f2d6ddea302862b052","2.jpg");
        TestCallable t3 = new TestCallable("https://pics6.baidu.com/feed/838ba61ea8d3fd1ffe50b135beb0651894ca5f6d.jpeg?token=34d0744ffdbbc1f2d6ddea302862b052","3.jpg");
        
        // 创立执行服务 
        ExecutorService ser = Executors.newFixedThreadPool(3);
        
        // 提交执行
        Future<Boolean> r1 = ser.submit(t1);
        Future<Boolean> r2 = ser.submit(t2);
        Future<Boolean> r3 = ser.submit(t3);
        
        // 获取后果
        boolean rs1 = r1.get();
        boolean rs2 = r2.get();
        boolean rs3 = r3.get();
        
        System.out.println(rs1);
        System.out.println(rs2);
        System.out.println(rs3);
        // 敞开服务
        ser.shutdown();}
}
 // 下载器
class WebDownloader{
    // 下载办法
    public void downloader(String url,String name) {
        try {FileUtils.copyURLToFile(new URL(url), new File(name));
        }catch (Exception e) {e.printStackTrace();
            System.out.println("IO 异样,downloader 办法呈现问题");
        }
    }
}

Lamda 表达式

语法:(parameters) -> expression 或 (parameters) ->{statements;}

作用:简化代码,防止匿名外部类定义过多

Function Interface(函数式接口):只蕴含惟一一个形象办法

能够通过 lamda 表达式来创立函数式接口的对象

推导 lambda 表达式

public class TestLambda1 {

    //3. 动态外部类
    static class Like2 implements ILike{

        @Override
        public void lambda() {System.out.println("I like lambda2");
        }
        
    }
    
    public static void main(String[] args) {ILike like = new Like();
        like.lambda();
        like = new Like2();
        like.lambda();
        
        //4. 部分外部类
        class Like3 implements ILike{

            @Override
            public void lambda() {System.out.println("I like lambda3");
            }        
        }
        like = new Like3();
        like.lambda();
        
        //5. 匿名外部类,没有类的名称,必须借助接口或者父类
        like = new ILike() {
            @Override
            public void lambda() {System.out.println("I like lambda4");
            }
        };
        like.lambda();
        
        //6. 用 lambda 简化
        like = () -> {System.out.println("I like lambda5");
        };
        like.lambda();}
}
//1. 定义一个函数式接口
interface ILike{void lambda();
}
//2. 实现类
class Like implements ILike{
    @Override
    public void lambda() {System.out.println("I like lambda");
    }    
}

简化 lambda 表达式:1. 省略参数类型 2. 省略括号

动态代理

示例(婚庆公司)

public class StaticProxy {public static void main(String[] args) {You you = new You(); 
        you.HappyMarry();
        //        new Thread(()->System.out.println("我爱你")).start();
//        new WeddingCompany(new You()).HappyMarry();
        // 代理
        WeddingCompany weddingCompany = new WeddingCompany(new You());
        weddingCompany.HappyMarry();}

}
interface Marry{void HappyMarry();
}
// 实在角色
class You implements Marry{
    @Override
    public void HappyMarry() {System.out.println("结婚了,开心");
        
    }
}
// 代理角色
class WeddingCompany implements Marry{
    private Marry target;
    
    public WeddingCompany(Marry target) {this.target = target;}

    @Override
    public void HappyMarry() {before();
        this.target.HappyMarry(); // 实在对象
        after();}

    private void after() {System.out.println("结婚之后,收尾款");
        
    }

    private void before() {System.out.println("结婚之前,安排现场");        
    }    
}

动态代理模式总结:

  • 实在对象和代理对象都要实现同一个接口
  • 代理对象代理实在对象

益处:

  • 代理对象能够做很多实在对象做不了的事件
  • 实在对象专一做本人的事件

1.3 线程状态

1.3.1 五大状态

1.3.2 线程进行

  • 不举荐应用 JDK 提供的 stop()、destroy()办法【已废除】
  • 举荐线程本人停下来(倡议应用一标记位进行终止变量)
// 测试 stop
//1. 倡议线程失常进行 --> 利用次数,不倡议死循环
//2. 倡议应用标记位
//3. 不要应用 stop 或者 destroy 等过期或者 JDK 不倡议应用的办法
public class TestStop implements Runnable{
    private boolean flag = true;
    public static void main(String[] args) {TestStop testStop = new TestStop();
        new Thread(testStop).start();
        for(int i = 0; i < 1000; i++) {System.out.println("main"+i);
            if(i == 900) {// 调用 stop()办法切换标记位,让线程进行
                testStop.stop();
                System.out.println("线程进行");
            }
        }
    }
    @Override
    public void run() {
        int i = 0;
        while(flag) {System.out.println("run ... Thread"+i++);
        }    
    }
    public void stop() {this.flag = false;}
}

1.3.3 线程休眠

sleep(毫秒)→就绪

每个对象有个锁,sleep 不会开释锁

// 模仿网络延时:放大问题的产生性
public class TestSleep implements Runnable{
    // 票数
    private int ticketNum = 10;
    @Override
    public void run() {while(true) {if(ticketNum<=0) {break;}
            // 模仿延时
            try {Thread.sleep(100);
            } catch (Exception e) {e.printStackTrace();
            }            System.out.println(Thread.currentThread().getName()+"拿到了第"+ticketNum--+"张票");
        }    
    }
    public static void main(String[] args) {TestSleep ticket = new TestSleep();
        new Thread(ticket,"小明").start();
        new Thread(ticket,"老师").start();
        new Thread(ticket,"黄牛党").start();}
}
import java.text.SimpleDateFormat;
import java.util.Date;

public class TestSleep2{public static void main(String[] args) {
        // 模仿倒计时
        try {tenDown();
        } catch (InterruptedException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();}
        // 打印以后零碎工夫
        Date startTime = new Date(System.currentTimeMillis());
        while(true) {
            try {System.out.println(new SimpleDateFormat("HH:mm:ss").format(startTime));
                Thread.sleep(1000);
                startTime = new Date(System.currentTimeMillis()); // 更新以后工夫
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();}
        }        
    }
    public static void tenDown() throws InterruptedException {
        int num = 3;
        while(true) {Thread.sleep(1000);
            System.out.println(num--);
            if(num<=0) {break;}
        }    
    }
}

1.3.4 线程礼让

Yield 让以后线程暂停但不阻塞,转为就绪状态

礼让不肯定胜利

// 测试礼让线程,礼让不肯定胜利
public class TestYield {public static void main(String[] args) {
        // TODO Auto-generated method stub
        MyYield myYield = new MyYield();
        new Thread(myYield,"a").start();
        new Thread(myYield,"b").start();}
}
class MyYield implements Runnable{
    @Override
    public void run() {
        // TODO Auto-generated method stub
        System.out.println(Thread.currentThread().getName()+"线程开始执行");
        Thread.yield(); // 礼让
        System.out.println(Thread.currentThread().getName()+"线程进行执行");
    }    
}

1.3.5 线程强制执行

Join 合并线程,待此线程执行实现后,再执行其余线程,其余线程阻塞(能够看作是插队)

// 测试 join 办法
public class TestJoin implements Runnable{public static void main(String[] args) throws InterruptedException {
        // 启动咱们的线程
        TestJoin testJoin = new TestJoin();
        Thread thread = new Thread(testJoin);
        thread.start();
        for (int i = 0; i < 500; i++) {if(i==200) {thread.join();// 插队
            }
            System.out.println("main"+i);
        }
    }
    @Override
    public void run() {for (int i = 0; i < 1000; i++) {System.out.println("线程 vip 来了"+i);
        }    
    }
}

1.3.6 线程优先级

优先高的不肯定先执行,默认是 5

// 测试线程的优先级
public class TestPriority{public static void main(String[] args) {
        // 主线程默认优先级
        System.out.println(Thread.currentThread().getName()+"--->"+Thread.currentThread().getPriority());
        MyPriority myPriority = new MyPriority();
        Thread t1 = new Thread(myPriority);
        Thread t2 = new Thread(myPriority);
        Thread t3 = new Thread(myPriority);
        Thread t4 = new Thread(myPriority);
        // 先设置优先级,再启动
        t1.start();
        t2.setPriority(1);
        t2.start();
        t3.setPriority(4);
        t3.start();
        t4.setPriority(Thread.MAX_PRIORITY); //MAX_PRIORITY=10
        t4.start();}

}
class MyPriority implements Runnable{
    @Override
    public void run() {    System.out.println(Thread.currentThread().getName()+"--->"+Thread.currentThread().getPriority());
        
    }    
}

1.3.7 守护(daemon)线程

线程分为 用户线程 守护线程

虚拟机必须确保用户线程(如,后盾记录操作日志,监控内存,垃圾回收期待)执行结束,但不必期待守护线程执行结束

// 测试守护线程
// 上帝守护你
public class TestDaemon {public static void main(String[] args) {God god = new God();
        You you = new You();
        Thread thread = new Thread(god);
        thread.setDaemon(true); // 默认是 false 示意是用户线程,失常的线程都是用户线程
        thread.start(); // 守护线程启动
        new Thread(you).start(); // 用户线程启动}
}
// 上帝
class God implements Runnable{

    @Override
    public void run() {while(true) {System.out.println("上帝保佑着你");
        }
    }    
}
// 你
class You implements Runnable{
    @Override
    public void run() {for (int i = 0; i < 36500; i++) {System.out.println("开心活着");
        }
        System.out.println("====Good bye!====");
    }    
}

1.4 线程同步

多个线程操作同一资源(并发)

线程同步是一种 期待机制 ,多个须要同时拜访同一对象的线程进图该对象的 期待池 造成队列,期待后面线程应用结束,下一线程再应用

造成条件:队列 + 锁(synchronized)

1.4.1 同步办法及同步块

三个不平安案例

1. 不平安的买票

// 不平安的买票(线程不平安)public class UnsafeBuyTicket {public static void main(String[] args) {BuyTicket station = new BuyTicket();
        new Thread(station,"苦逼的我").start();
        new Thread(station,"牛逼的你们").start();
        new Thread(station,"可恶的黄牛党").start();}
    

}

class BuyTicket implements Runnable{
    
    // 票
    private int ticketNum = 10;
    boolean flag = true; // 内部进行形式
    @Override
    public void run() {
        // 买票
        while(flag) {buy();
        }
    }
    private void buy() {if(ticketNum<=0) {
            flag = false;
            return;
        }
        try {Thread.sleep(100);
        } catch (InterruptedException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();}
        // 买票
        System.out.println(Thread.currentThread().getName()+"拿到"+ticketNum--);
    }
    
}

2. 不平安的取钱

// 不平安的取钱(两个人)public class UnsafeBank {public static void main(String[] args) {Account account = new Account(100,"结婚基金");
        Drawing you = new Drawing(account,50,"你");
        Drawing GF = new Drawing(account,100,"女朋友");
        you.start();
        GF.start();}

}
// 账户
class Account{
    int money; // 余额
    String name; // 卡名
    public Account(int money, String name) {super();
        this.money = money;
        this.name = name;
    }
}
// 银行:模仿取款
class Drawing extends Thread{
    Account account;
    // 取了多少钱
    int drawingMoney;
    // 当初手里有多少钱
    int nowMoney;
    public Drawing(Account account,int drawingMoney,String name) {super(name);
        this.account = account;
        this.drawingMoney = drawingMoney;
    }
    // 取钱
    @Override
    public void run() {
        // 判断有没有钱
        if(account.money - drawingMoney < 0) {System.out.println(Thread.currentThread().getName()+"钱不够,取不了");
            return;
        }
        // 放大问题的产生性
        try {Thread.sleep(100);
        } catch (InterruptedException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();}
        // 卡内余额 = 余额 - 取的钱
        account.money = account.money - drawingMoney;
        // 你手里的钱
        nowMoney = nowMoney + drawingMoney;
        System.out.println(account.name+"余额为:"+account.money);
        //Thread.currentThread() == this.getName()
        System.out.println(this.getName()+"手里的钱:"+nowMoney);
    }
}

3. 不平安的汇合

// 线程不平安的汇合
// 增加到同一地位被笼罩
public class UnsafeList {public static void main(String[] args) {List<String> list = new ArrayList<String>();
        for (int i = 0; i < 10000; i++) {new Thread(()->{list.add(Thread.currentThread().getName());
            }).start();}
        System.out.println(list.size());
    }
}

synchronized

同步办法:public synchronized void method(int args) {}

synchronized 办法管制对“对象”的拜访,每个对象对象对应一把锁,每个 synchronized 办法都必须取得调用该办法的锁能力执行,否则线程会阻塞,办法一旦执行,就独占该锁,直到该办法返回才开释锁,前面被阻塞的线程能力取得这个锁,继续执行

同步块:synchronized(Obj) {}

Obj 称为同步监视器

  • Obj 能够是任何对象,然而举荐应用共享资源作为同步监视器
  • 同步办法中无需指定同步监视器,因为同步办法的同步监视器就是 this
public void run() {
        // 锁的对象就是变动的量,须要增删改的对象
        synchronized (account) {
            // 判断有没有钱
            if(account.money - drawingMoney < 0) {System.out.println(Thread.currentThread().getName()+"钱不够,取不了");
                return;
            }
            // 放大问题的产生性
            try {Thread.sleep(100);
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();}
            // 卡内余额 = 余额 - 取的钱
            account.money = account.money - drawingMoney;
        }
        // 你手里的钱
        nowMoney = nowMoney + drawingMoney;
        System.out.println(account.name+"余额为:"+account.money);
        //Thread.currentThread() == this.getName()
        System.out.println(this.getName()+"手里的钱:"+nowMoney);
    }

CopyOnWriteArrayList

JUC 就是 java.util .concurrent 工具包的简称。这是一个解决线程的工具包,JDK 1.5 开始呈现的。Callable 接口也在 JUC 中。

import java.util.concurrent.CopyOnWriteArrayList;

// 测试 JUC 平安类型的汇合
public class TestJUC {public static void main(String[] args) {CopyOnWriteArrayList<String> list = new CopyOnWriteArrayList<String>();
        for(int i = 0; i < 10000; i++) {new Thread(()->{list.add(Thread.currentThread().getName());
            }).start();}
        try {Thread.sleep(3000);
        } catch (InterruptedException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();}
        System.out.println(list.size());
    }
}

1.4.2 死锁

多个线程各自占有一些共享资源,并且相互期待其余线程占有的资源能力运行,而导致两个或者多个线程都在期待对方开释资源,都进行执行的情景,某一同步块同时领有”两个以上对象的锁“时,就可能会产生”死锁“的问题

// 死锁:多个线程相互抱着对方须要的资源,而后造成僵持
public class DeadLock {public static void main(String[] args) {Makeup g1 = new Makeup(0,"灰姑娘");
        Makeup g2 = new Makeup(1,"白雪公主");
        g1.start();
        g2.start();}

}
// 口红
class Lipstick{ }
// 镜子
class Mirror{ }
class Makeup extends Thread{
    // 须要的资源只有一份,用 static 来保障只有一份
    static Lipstick lipstick = new Lipstick();
    static Mirror mirror = new Mirror();
    
    int choice; // 抉择
    String girlName; // 抉择化妆品的人
    
    Makeup(int choice,String girlName){
        this.choice = choice;
        this.girlName = girlName;
    }
    @Override
    public void run() {
        // 化妆
        try {makeup();
        } catch (InterruptedException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();}
    }
    
    // 化妆,相互持有对方的锁,就是须要拿到对方的资源
    private void makeup() throws InterruptedException {if(choice == 0) {synchronized(lipstick) { // 取得口红的锁
                System.out.println(this.girlName+"取得口红的锁");
                Thread.sleep(1000);
            
                synchronized(mirror) {System.out.println(this.girlName+"取得镜子的锁");
                }
            }
        }else {synchronized(mirror) { // 取得口红的锁
                System.out.println(this.girlName+"取得镜子的锁");
                Thread.sleep(2000);
            
                synchronized(lipstick) {System.out.println(this.girlName+"取得口红的锁");
                }
            }
        }
    }
}

锁中锁(多个对象相互嵌套的锁)使多个线程相互抱着对方须要的资源,而后造成僵持

解决办法:锁离开写,不要同时占有多个资源

// 化妆,相互持有对方的锁,就是须要拿到对方的资源
    private void makeup() throws InterruptedException {if(choice == 0) {synchronized(lipstick) { // 取得口红的锁
                System.out.println(this.girlName+"取得口红的锁");
                Thread.sleep(1000);
            }
            synchronized(mirror) {System.out.println(this.girlName+"取得镜子的锁");
                }
        }else {synchronized(mirror) { // 取得口红的锁
                System.out.println(this.girlName+"取得镜子的锁");
                Thread.sleep(2000);
            }
            synchronized(lipstick) {System.out.println(this.girlName+"取得口红的锁");
                }
        }

产生死锁的四个必要条件:

  1. 互斥条件
  2. 申请与放弃条件
  3. 不剥夺条件
  4. 循环期待条件

1.4.3 Lock 锁

从 JDK 5.0 开始,Java 提供了更弱小的线程同步机制——显式 定义同步锁对象来实现同步。同步锁应用 Lock 对象充当,Lock 锁也蕴含在 JUC 内

ReentrantLock(可重入锁)类实现了 Lock,能够显式加锁、开释锁

应用格局:

Lock lock=new ReentrantLock();
lock.lock();
try{// 解决工作}catch(Exception ex){ }finally{lock.unlock();   // 开释锁
}

测试 Lock 类(买票):

import java.util.concurrent.locks.ReentrantLock;

// 测试 Lock 类
public class TestLock {public static void main(String[] args) {TestLock2 testLock2 = new TestLock2(); 
        new Thread(testLock2).start();
        new Thread(testLock2).start();
        new Thread(testLock2).start();}
}
class TestLock2 implements Runnable{
    int ticketNum = 10;
    
    // 定义 Lock 锁
    private final ReentrantLock lock = new ReentrantLock();
    @Override
    public void run() {while(true) {lock.lock();// 加锁
            try {if(ticketNum > 0) {
                    try {Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();}
                    System.out.println(ticketNum--);
                }else {break;}
            }finally {
                // 解锁
                lock.unlock();}        
        }
    }
}

synchronized 与 Lock 比照

  • Lock 是显式锁(手动开启和敞开锁),synchronized 是隐式锁,主动开释
  • 应用 Lock 锁,JVM 将破费较少的工夫来调度线程,性能更好。并且具备更好的扩展性(提供更多子类)

1.4.4 线程通信

线程通信办法:

留神:均是 Object 类的办法,都只能在同步办法或者同步代码块中应用,否则会抛出异样

生产者消费者问题

解决办法:

  1. 利用缓冲区解决:管程法

    // 测试生产者消费者模型 --> 利用缓冲区解决:管程法
    
    // 生产者,消费者,产品,缓冲区
    public class TestPC {public static void main(String[] args) {SynContainer container = new SynContainer();        
            new Producer(container).start();
            new Consumer(container).start();}
    
    }
    
    // 生产者
    class Producer extends Thread{
        SynContainer container;
        public Producer(SynContainer container) {this.container = container;}
        
        // 生产
        @Override
        public void run() {for (int i = 0; i < 100; i++) {container.push(new Chicken(i));
                System.out.println("生产了第"+i+"只鸡");
            }
        }
    }
    
    // 消费者
    class Consumer extends Thread{
        SynContainer container;
        public Consumer(SynContainer container) {this.container = container;}
        // 生产
            @Override
            public void run() {for (int i = 0; i < 100; i++) {System.out.println("生产了第"+container.pop().id+"只鸡");
                }        
            }
    }
    
    // 产品
    class Chicken{
        int id; // 产品编号
        public Chicken(int id) {this.id = id;}    
    }
    
    // 缓冲区
    class SynContainer{
        // 须要一个容器大小
        Chicken[] chickens = new Chicken[10];
        // 容器计数器
        int count = 0;
        
        // 生产者放入产品
        public synchronized void push(Chicken chicken) {
            // 如果容器满了,就须要期待消费者生产
            if(count == chickens.length) {
                // 告诉消费者生产,生产期待
                try {this.wait();
                } catch (InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();}
            }
            // 如果没有满,咱们就须要丢入产品
            chickens[count] = chicken;
            count++;
            
            // 能够告诉消费者生产了
            this.notifyAll();}
    
        // 消费者生产产品
        public synchronized Chicken pop() {
            // 判断是否生产
            if(count==0) {
                // 期待生产者生产
                try {this.wait();
                } catch (InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();}
            }
            // 如果能够生产
            count--;
            Chicken chicken = chickens[count];    
            // 吃完了,告诉生产者生产
            this.notifyAll();
            return chicken;
            
        }
    }
  2. 利用标记位解决:信号灯法

    package com.zhg.thread;
    
    // 测试生产者消费者模型 2 --> 利用标记位解决:信号灯法
    public class TestPC2 {public static void main(String[] args) {TV tv = new TV();
            new Player(tv).start();
            new Watcher(tv).start();}
    
    }
    
    // 生产者 --> 演员
    class Player extends Thread{
        TV tv;
        public Player(TV tv) {this.tv = tv;}
        @Override
        public void run() {for (int i = 0; i < 20; i++) {if(i%2==0) {this.tv.play("高兴大本营");
                }else {this.tv.play("广告");
                }
            }
        }
    }
    
    // 消费者 --> 观众
    class Watcher extends Thread{
        TV tv;
        public Watcher(TV tv) {this.tv = tv;}
        @Override
        public void run() {for (int i = 0; i < 20; i++) {tv.watch();
            }
        }
    }
    
    // 产品 --> 节目
    class TV{
        
        // 演员表演,观众期待 T
        // 观众观看,演员期待 F
        String voice;// 表演的节目
        boolean flag = true;
        
        // 表演
        public synchronized void play(String voice) {if(!flag) {
                try {this.wait();
                } catch (InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();}
            }
            
            System.out.println("演员表演了:"+voice);
            // 告诉观众观看
            this.notifyAll(); // 告诉唤醒
            this.voice = voice;
            this.flag = !this.flag;
        }
        
        // 观看
        public synchronized void watch() {if(flag) {
                try {this.wait();
                } catch (InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();}
            }
            System.out.println("观众观看了:"+voice);
            // 告诉演员表演
            this.notifyAll();
            this.flag = !this.flag;
        }
    }

线程池

背景:常常创立和销毁,使用量特地大的资源,比方并发状况下的线程,对性能影响很大。

思路:提前创立好多个线程,放入线程池中,应用时间接获取,应用完放回池中。能够防止频繁创立销毁、实现反复利用。

益处:

  • 进步响应速度
  • 升高资源耗费
  • 便于线程治理

JDK 5.0 起提供了线程池相干 API:ExecutorService 和 Executors

  • ExecutorService:真正的线程池接口。
  • Executor:工具类、线程池的工厂类,用于创立并返回不同类型的线程池。
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

// 测试线程池
public class TestPool {public static void main(String[] args) {
        //1. 创立服务,创立线程池
        //newFixedThreadPool 参数为线程池大小
        ExecutorService service = Executors.newFixedThreadPool(10);
        service.execute(new MyThread());
        service.execute(new MyThread());
        service.execute(new MyThread());
        service.execute(new MyThread());
        //2. 敞开连贯
        service.shutdown();}
}

class MyThread implements Runnable{

    @Override
    public void run() {System.out.println(Thread.currentThread().getName());
        
    }
}

正文完
 0