关于java:常用十大算法十-踏棋盘算法

32次阅读

共计 2283 个字符,预计需要花费 6 分钟才能阅读完成。

罕用十大算法(十)— 踏棋盘算法

<!– more –>

博客阐明

文章所波及的材料来自互联网整顿和集体总结,意在于集体学习和教训汇总,如有什么中央侵权,请分割自己删除,谢谢!

介绍

  • 马踏棋盘算法也被称为骑士环游问题
  • 将马随机放在国际象棋的 8×8 棋盘 Board0~7]的某个方格中,马按走棋规定 (马走日字) 进行挪动。要求每个方格只进入一次,走遍棋盘上全副 64 个方格

思路

  • 马踏棋盘问题 (骑士环游问题) 实际上是图的深度优先搜寻 (DFS) 的利用。
  • 如果应用回溯(就是深度优先搜寻)来解决,如果马儿踏了 53 个点,如图:走到了第 53 个,坐标(1,0),发现曾经走到止境,没方法,那就只能回退了,查看其余的门路,就在棋盘上不停的回溯……,

代码实现

package com.atguigu.horse;

import java.awt.Point;
import java.util.ArrayList;
import java.util.Comparator;

public class HorseChessboard {

    private static int X; // 列
    private static int Y; // 行
    
    private static boolean visited[];
    private static boolean finished; 
    
    public static void main(String[] args) {
        X = 8;
        Y = 8;
        int row = 1; 
        int column = 1; 
        int[][] chessboard = new int[X][Y];
        visited = new boolean[X * Y];
        long start = System.currentTimeMillis();
        traversalChessboard(chessboard, row - 1, column - 1, 1);
        long end = System.currentTimeMillis();
        System.out.println("工夫:" + (end - start));
        for(int[] rows : chessboard) {for(int step: rows) {System.out.print(step + "\t");
            }
            System.out.println();}
    }
    
    public static void traversalChessboard(int[][] chessboard, int row, int column, int step) {chessboard[row][column] = step;
        visited[row * X + column] = true; 
        ArrayList<Point> ps = next(new Point(column, row));
        sort(ps);
        while(!ps.isEmpty()) {Point p = ps.remove(0);
            if(!visited[p.y * X + p.x]) {traversalChessboard(chessboard, p.y, p.x, step + 1);
            }
        }
        if(step < X * Y && !finished) {chessboard[row][column] = 0;
            visited[row * X + column] = false;
        } else {finished = true;}
    }
    

    public static ArrayList<Point> next(Point curPoint) {ArrayList<Point> ps = new ArrayList<Point>();
        Point p1 = new Point();
        if((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y -1) >= 0) {ps.add(new Point(p1));
        }
        if((p1.x = curPoint.x - 1) >=0 && (p1.y=curPoint.y-2)>=0) {ps.add(new Point(p1));
        }
        if ((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y - 2) >= 0) {ps.add(new Point(p1));
        }
        if ((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y - 1) >= 0) {ps.add(new Point(p1));
        }
        if ((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y + 1) < Y) {ps.add(new Point(p1));
        }
        if ((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y + 2) < Y) {ps.add(new Point(p1));
        }
        if ((p1.x = curPoint.x - 1) >= 0 && (p1.y = curPoint.y + 2) < Y) {ps.add(new Point(p1));
        }
        if ((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y + 1) < Y) {ps.add(new Point(p1));
        }
        return ps;
    }

    // 排序
    public static void sort(ArrayList<Point> ps) {ps.sort(new Comparator<Point>() {
            @Override
            public int compare(Point o1, Point o2) {int count1 = next(o1).size();
                int count2 = next(o2).size();
                if(count1 < count2) {return -1;} else if (count1 == count2) {return 0;} else {return 1;}
            }
        });
    }
}

感激

尚硅谷

以及勤奋的本人,集体博客,GitHub

正文完
 0