关于java:本地Cache系统简易设计

56次阅读

共计 17026 个字符,预计需要花费 43 分钟才能阅读完成。

为什么应用缓存?

  • 升高数据库的拜访压力。
  • 进步查问效率。
  • 改善用户体验。

你都理解哪些缓存?

  • 数据库内置缓存(DBA 批改)。
  • 数据层缓存(由长久层框架决定, 例如 mybatis)
  • 业务层缓存(由业务层框架以及第三缓存产品决定: 本地缓存 + 分布式缓存)
  • 浏览器缓存(Cache-Control)

设计缓存都应该思考什么问题?

  • 存储构造:应用什么构造存储数据?(数组,链表,散列存储 - 哈希存储)
  • 淘汰算法:无限容量(LRU,FIFO,…..),不限容量(GC)
  • 并发平安:保障线程平安。
  • 任务调度:每隔多长时间清理一下缓存。
  • 日志记录:是否命中?(命中率)

缓存零碎设计根底

缓存规范定义

package com.cy.java.cache;  
/** Cache 接口设计 */  
public interface Cache {public void putObject(Object key,Object value);  
 public Object getObject(Object key);  
 public Object removeObject(Object key);  
 public void clear();  
 public int size();}

繁难 Cache 实现

场景利用:

  • 存储数据量比拟小(因为没有思考淘汰机制)
  • 没有线程共享(一个线程的外部缓存)
  • 缓存对象生命周期比拟短
package com.cy.java.cache;  
import java.util.HashMap;  
import java.util.Map;  
/** 负责真正存储数据的一个对象, 将数据存储到一个 map 中 */  
public class PerpetualCache implements Cache {  
/** 特点:线程不平安,key 不容许反复,不能保障 key 的程序  */  
private Map<Object,Object> cache=new HashMap<>();  
@Override  
public void putObject(Object key, Object value) {cache.put(key, value);  
}  
@Override  
public Object getObject(Object key) {return cache.get(key);  
}  
@Override  
public Object removeObject(Object key) {return cache.remove(key);  
}  
@Override  
public void clear() {cache.clear();  
}  
@Override  
public int size() {return cache.size();  
}  
@Override  
public String toString() {return cache.toString();  
}  
public static void main(String[] args) {Cache cache=new PerpetualCache();  
 cache.putObject("A", 100);  
 cache.putObject("B", 200);  
 cache.putObject("C", 300);  
 System.out.println(cache);  
 cache.removeObject("D");  
 cache.clear();  
 System.out.println(cache.size());  
}  
}

构建线程平安 Cache 对象

场景利用:并发环境

package com.cy.java.cache;  
/** 线程平安的 cache 对象 */  
public class SynchronizedCache implements Cache{  
private Cache cache;  
public SynchronizedCache(Cache cache) {this.cache=cache;}  
@Override  
public synchronized void putObject(Object key, Object value) {cache.putObject(key, value);  
}  
@Override  
public synchronized Object getObject(Object key) {  
// TODO Auto-generated method stub 
return cache.getObject(key);  
}  
@Override  
public synchronized Object removeObject(Object key) {  
// TODO Auto-generated method stub 
return cache.removeObject(key);  
}  
@Override  
public synchronized void clear() {cache.clear();  
}  
@Override  
public synchronized int size() {return cache.size();  
}  
@Override  
public String toString() {return cache.toString();  
}  
public static void main(String[] args) {  
SynchronizedCache cache=

 new SynchronizedCache(new PerpetualCache());  
cache.putObject("A", 100);  
cache.putObject("B", 200);  
cache.putObject("C", 300);  
System.out.println(cache);  
}  
  
}

思考:对于 SynchronizedCache 有什么劣势,劣势?

反对日志记录的 Cache 实现

package com.cy.java.cache;  
/** 用于记录命中率的日志 cache*/  
public class LoggingCache implements Cache {  
private Cache cache;  
/** 记录申请次数 */  
private int requests;  
/** 记录命中次数 */  
private int hits;  
public LoggingCache(Cache cache) {this.cache=cache;}  
@Override  
public void putObject(Object key, Object value) {cache.putObject(key, value);  
}  
@Override  
public Object getObject(Object key) {  
requests++;  
Object obj=cache.getObject(key);  
if(obj!=null)hits++;  
System.out.println("Cache hit Ratio :"+hits*1.0/requests);  
return obj;  
}  
@Override  
public Object removeObject(Object key) {return cache.removeObject(key);  
}  
@Override  
public void clear() {cache.clear();  
}  
@Override  
public int size() {return cache.size();  
}  
@Override  
public String toString() {  
// TODO Auto-generated method stub 
return cache.toString();}  
public static void main(String[] args) {  
SynchronizedCache cache=  
 new SynchronizedCache(  
new LoggingCache(new PerpetualCache()));  
cache.putObject("A", 100);  
cache.putObject("B", 200);  
cache.putObject("C", 300);  
System.out.println(cache);  
cache.getObject("D");  
cache.getObject("A");  
}  
  
}

思考:你感觉 LoggingCache 记录日志的形式有什么不好的中央?(信息的完整性,同步问题)

LruCache 实现

利用场景:基于 LRU 算法的的根本实现

package com.cy.java.cache;  
import java.util.LinkedHashMap;  
import java.util.Map;  
  
/** 缓存淘汰策略:LRU(最近起码应用算法)*/  
public class LruCache implements Cache {  
 private Cache cache;  
 /** 通过此属性记录要移除的数据对象 */  
 private Object eldestKey;  
 /** 通过此 map 记录 key 的拜访程序 */  
 private Map<Object,Object> keyMap;  
 @SuppressWarnings("serial")  
 public LruCache(Cache cache,int maxCap) {  
 this.cache=cache;  
//LinkedHashMap 能够记录 key 的增加程序或者拜访程序 
 this.keyMap=

 new LinkedHashMap<Object,Object>(maxCap, 0.75f, true)

 {//accessOrder 
// 此办法每次执行 keyMap 的 put 操作时调用 
@Override  
protected boolean removeEldestEntry

 (java.util.Map.Entry<Object, Object> eldest) {boolean isFull=size()>maxCap;  
if(isFull)eldestKey=eldest.getKey();  
return isFull;  
}  
 };  
}  
@Override  
public void putObject(Object key, Object value) {  
// 存储数据对象 
cache.putObject(key, value);  
// 记录 key 的拜访程序,如果曾经满了,就要从 cache 中移除数据 
keyMap.put(key, key);// 此时会执行 keyMap 对象的 removeEldestEntry 
if(eldestKey!=null) {cache.removeObject(eldestKey);  
eldestKey=null;  
}  
}  
@Override  
public Object getObject(Object key) {keyMap.get(key);// 记录 key 的拜访程序 
return cache.getObject(key);  
}  
  
@Override  
public Object removeObject(Object key) {return cache.removeObject(key);  
}  
  
@Override  
public void clear() {cache.clear();  
keyMap.clear();}  
@Override  
public int size() {return cache.size();  
}  
@Override  
public String toString() {return cache.toString();  
}  
  
public static void main(String[] args) {  
SynchronizedCache cache=  
 new SynchronizedCache(  
new LoggingCache(new LruCache(new PerpetualCache(),3)));  
cache.putObject("A", 100);  
cache.putObject("B", 200);  
cache.putObject("C", 300);  
cache.getObject("A");  
cache.getObject("C");  
cache.putObject("D", 400);  
cache.putObject("E", 500);  
System.out.println(cache);  
  
}  
}

设置 Cache 淘汰算法:FIFO 算法

package com.cy.java.cache;  
import java.util.Deque;  
import java.util.LinkedList;  
/**  
* FifoCache : 基于 FIFO 算法 (对象满了要按先进先出算法移除对象) 实现 cache 对象  
*/  
public class FifoCache implements Cache{  
/** 借助此对象存储数据 */  
private Cache cache;  
/** 借助此队列记录 key 的程序 */  
private Deque<Object> keyOrders;  
/** 通过此变量记录 cache 能够存储的对象个数 */  
private int maxCap;  
public FifoCache(Cache cache,int maxCap) {  
this.cache=cache;  
keyOrders=new LinkedList<>();  
this.maxCap=maxCap;  
}  
@Override  
public void putObject(Object key, Object value) {//1. 记录 key 的程序(起始就是存储 key,增加在队列最初地位) 
keyOrders.addLast(key);  
//2. 检测 cache 中数据是否已满,满了则移除。if(keyOrders.size()>maxCap) {Object eldestKey=keyOrders.removeFirst();  
cache.removeObject(eldestKey);  
}  
//3. 放新的对象 
cache.putObject(key, value);  
}  
@Override  
public Object getObject(Object key) {return cache.getObject(key);  
}  
  
@Override  
public Object removeObject(Object key) {Object obj=cache.removeObject(key);  
keyOrders.remove(key);  
return obj;  
}  
@Override  
public void clear() {cache.clear();  
keyOrders.clear();}  
@Override  
public int size() {return cache.size();  
}  
@Override  
public String toString() {  
// TODO Auto-generated method stub 
return cache.toString();}  
public static void main(String[] args) {  
Cache cache=

 new SynchronizedCache(  
new LoggingCache(  
 new FifoCache(new PerpetualCache(),3)));  
cache.putObject("A",100);  
cache.putObject("B",200);  
cache.putObject("C",300);  
cache.getObject("A");  
cache.putObject("D",400);  
cache.putObject("E",500);  
System.out.println(cache);  
}   
}

序列化 Cache 的实现

场景:存储到 cache 的是对象的字节

package com.cy.java.cache;  
import java.io.ByteArrayInputStream;  
import java.io.ByteArrayOutputStream;  
import java.io.ObjectInputStream;  
import java.io.ObjectOutputStream;  
  
public class SerializedCache implements Cache {  
  
private Cache cache;  
public SerializedCache(Cache cache) {this.cache=cache;}  
/** 序列化 */  
private byte[] serialize(Object value) {  
//1. 构建流对象 
ByteArrayOutputStream bos=null;  
ObjectOutputStream oos=null;  
try {  
//1.2 构建字节数组输入流,此流对象内置可扩容的数组。bos=new ByteArrayOutputStream();  
//1.3 构建对象输入流 
oos=new ObjectOutputStream(bos);  
//2. 对象序列化 
oos.writeObject(value);

 // 此时对象会以字节的形式写入到字节数组输入流 
oos.flush();  
return bos.toByteArray();}catch (Exception e) {throw new RuntimeException(e);  
}finally {  
//3. 敞开流对象 
if(bos!=null)

 try{bos.close();bos=null;}catch(Exception e) {}  
if(oos!=null)

 try{oos.close();oos=null;}catch (Exception e2) {}}  
}  
/** 反序列化 */  
public Object deserialize(byte[] value) {  
//1. 创立流对象 
ByteArrayInputStream bis=null;  
ObjectInputStream ois=null;  
try {  
//1.1 构建字节数组输出流,此对象能够间接读取数组中的字节信息 
bis=new ByteArrayInputStream(value);  
//1.2 构建对象输出流(对象反序列化) 
ois=new ObjectInputStream(bis);  
//2. 反序列化对象 
Object obj=ois.readObject();  
return obj;  
}catch(Exception e) {throw new RuntimeException(e);  
}finally {  
//3. 敞开流对象 
if(bis!=null)

 try{bis.close();bis=null;}catch(Exception e) {}  
if(ois!=null)

 try{ois.close();ois=null;}catch (Exception e2) {}}  
}  
@Override  
public void putObject(Object key, Object value) {cache.putObject(key, serialize(value));  
}  
@Override  
public Object getObject(Object key) {return deserialize((byte[])cache.getObject(key));  
}  
@Override  
public Object removeObject(Object key) {return cache.removeObject(key);  
}  
@Override  
public void clear() {cache.clear();  
}  
@Override  
public int size() {return cache.size();  
}  
public static void main(String[] args) {Cache cache=new SerializedCache(new PerpetualCache());  
cache.putObject("A", 200);  
cache.putObject("B", 300);  
Object v1=cache.getObject("A");  
Object v2=cache.getObject("A");  
System.out.println(v1==v2);  
System.out.println(v1);  
System.out.println(v2);  
}  
}

软件援用 Cache 实现

利用场景:内存不足时淘汰缓存中数据

package com.cy.java.cache;  
  
import java.lang.ref.ReferenceQueue;  
import java.lang.ref.SoftReference;  
/** 软援用 */  
public class SoftCache implements Cache {  
private Cache cache;  
private ReferenceQueue<Object> garbageOfRequenceQueue=

 new ReferenceQueue<>();  
public SoftCache(Cache cache) {this.cache=cache;}  
@Override  
public void putObject(Object key, Object value) {//1. 移除一些垃圾对象(Soft 援用援用的曾经被回收的对象) 
removeGarbageObjects();  
//2. 将对象存储到 cache(key 不变,Value 为为 soft 援用对象) 
cache.putObject(key, 

 new SoftEntry(key, value, garbageOfRequenceQueue));  
}  
  
@Override  
public Object getObject(Object key) {  
//1. 基于 key 获取软援用对象并判断 
SoftEntry softEntry=(SoftEntry)cache.getObject(key);  
if(softEntry==null)return null;  
//2. 基于软援用对象获取它援用的对象并判断 
Object target = softEntry.get();  
if(target==null)cache.removeObject(key);  
return target;  
}  
  
@Override  
public Object removeObject(Object key) {//1. 移除一些垃圾对象(Soft 援用援用的曾经被回收的对象) 
removeGarbageObjects();  
//2. 从 cache 中移除对象 
Object removedObj=cache.removeObject(key);  
return removedObj;  
}  
  
@Override  
public void clear() {//1. 移除一些垃圾对象(Soft 援用援用的曾经被回收的对象) 
removeGarbageObjects();  
//2. 清空 cache 
cache.clear();}  
@Override  
public int size() {removeGarbageObjects();  
return cache.size();}  
private void removeGarbageObjects() {  
SoftEntry softEntry=null;  
//1. 从援用队列中获取曾经被 GC 的一些对象的援用 
 while((softEntry=

 (SoftEntry)garbageOfRequenceQueue.poll())!=null){  
//softEntry 不为 null 示意 softEntry 援用的对象曾经被移除 
//2. 从 cache 中将对象援用移除。cache.removeObject(softEntry.key);  
}  
}  
/** 定义软援用类型 */  
private static class SoftEntry extends SoftReference<Object>{  
private final Object key;  
public SoftEntry(Object key,

 Object referent, ReferenceQueue<? super Object> rQueue) {super(referent, rQueue);  
this.key=key;  
}  
}  
@Override  
public String toString() {  
// TODO Auto-generated method stub 
return cache.toString();}  
  
public static void main(String[] args) {Cache cache=new SoftCache(new PerpetualCache());  
cache.putObject("A", new byte[1024*1024]);  
cache.putObject("B", new byte[1024*1024]);  
cache.putObject("C", new byte[1024*1024]);  
cache.putObject("D", new byte[1024*1024]);  
cache.putObject("E", new byte[1024*1024]);  
System.out.println(cache.size());  
System.out.println(cache);  
}  
  
}

弱 Cache 对象实现

利用场景:GC 触发革除缓存对象

package com.cy.java.cache;  
  
import java.lang.ref.ReferenceQueue;  
import java.lang.ref.WeakReference;  
/** 弱援用 */  
public class WeakCache implements Cache {  
private Cache cache;  
private ReferenceQueue<Object> garbageOfRequenceQueue=

 new ReferenceQueue<>();  
public WeakCache(Cache cache) {this.cache=cache;}  
  
@Override  
public void putObject(Object key, Object value) {//1. 移除一些垃圾对象(Soft 援用援用的曾经被回收的对象) 
removeGarbageObjects();  
//2. 将对象存储到 cache(key 不变,Value 为为 soft 援用对象) 
cache.putObject(key, 

 new WeakEntry(key, value, garbageOfRequenceQueue));  
}  
  
@Override  
public Object getObject(Object key) {  
//1. 基于 key 获取软援用对象并判断 
WeakEntry softEntry=(WeakEntry)cache.getObject(key);  
if(softEntry==null)return null;  
//2. 基于软援用对象获取它援用的对象并判断 
Object target = softEntry.get();  
if(target==null)cache.removeObject(key);  
return target;  
}  
  
@Override  
public Object removeObject(Object key) {//1. 移除一些垃圾对象(Soft 援用援用的曾经被回收的对象) 
removeGarbageObjects();  
//2. 从 cache 中移除对象 
Object removedObj=cache.removeObject(key);  
return removedObj;  
}  
  
@Override  
public void clear() {//1. 移除一些垃圾对象(Soft 援用援用的曾经被回收的对象) 
removeGarbageObjects();  
//2. 清空 cache 
cache.clear();}  
  
@Override  
public int size() {removeGarbageObjects();  
return cache.size();}  
private void removeGarbageObjects() {  
WeakEntry softEntry=null;  
//1. 从援用队列中获取曾经被 GC 的一些对象的援用 
while((softEntry=

 (WeakEntry)garbageOfRequenceQueue.poll())!=null) {  
//softEntry 不为 null 示意 softEntry 援用的对象曾经被移除 
//2. 从 cache 中将对象援用移除。cache.removeObject(softEntry.key);  
}  
}  
/** 定义软援用类型 */  
private static class WeakEntry extends WeakReference<Object>{  
private final Object key;  
public WeakEntry(Object key,

 Object referent, ReferenceQueue<? super Object> rQueue) {super(referent, rQueue);  
this.key=key;  
}  
}  
@Override  
public String toString() {return cache.toString();  
}  
public static void main(String[] args) {Cache cache=new WeakCache(new PerpetualCache());  
cache.putObject("A", new byte[1024*1024]);  
cache.putObject("B", new byte[1024*1024]);  
cache.putObject("C", new byte[1024*1024]);  
cache.putObject("D", new byte[1024*1024]);  
cache.putObject("E", new byte[1024*1024]);  
cache.putObject("F", new byte[1024*1024]);  
cache.putObject("G", new byte[1024*1024]);  
System.out.println(cache.size());  
System.out.println(cache);  
}  
  
}

缓存零碎设计进阶

缓存利用需要降级

  • 缓存零碎既要保障线程平安又要保障性能。
  • 缓存日志的记录要写到文件,而且是异步写
  • 向缓存中写数据时要进步序列化性能。

缓存对象读写锁利用

package com.cy.java.cache;  
  
import java.util.concurrent.locks.ReentrantReadWriteLock;  
  
/**  
* 构建线程平安对象,基于 ReentrantReadWriteLock 对象实现读写锁利用。* @author qilei  
*/  
public class ReentrantLockCache implements Cache {  
  
private Cache cache;  
/**  
* 此对象提供了读锁,写锁利用形式.  
* 1)写锁:排他锁  
* 2)读锁:共享锁  
* 阐明:读写不能同时执行。*/  
private final ReentrantReadWriteLock readWriteLock =  
new ReentrantReadWriteLock();  
public ReentrantLockCache(Cache cache) {  
this.cache=cache;  
// TODO Auto-generated constructor stub 
}  
@Override  
public void putObject(Object key, Object value) {readWriteLock.writeLock().lock();  
try {cache.putObject(key, value);  
}finally {readWriteLock.writeLock().unlock();}  
}  
  
@Override  
public Object getObject(Object key) {readWriteLock.readLock().lock();  
try {Object object=cache.getObject(key);  
 return object;  
}finally{readWriteLock.readLock().unlock();}  
}  
  
@Override  
public Object removeObject(Object key) {readWriteLock.writeLock().lock();  
try {Object object=cache.removeObject(key);  
 return object;  
}finally{readWriteLock.writeLock().unlock();}  
}  
  
@Override  
public void clear() {readWriteLock.writeLock().lock();  
try {cache.clear();  
}finally{readWriteLock.writeLock().unlock();}  
}  
  
@Override  
public int size() {readWriteLock.readLock().lock();  
try {int size=cache.size();  
 return size;  
}finally{readWriteLock.readLock().unlock();}  
}  
}

异步日志 Cache 实现

第一步:增加依赖

` <dependency>  
 <groupId>ch.qos.logback</groupId>  
 <artifactId>logback-classic</artifactId>  
 <version>1.2.3</version>  
 </dependency> ` 

第二步:增加配置文件 logback.xml (参考我的项目代码)

 <?xml version="1.0" encoding="UTF-8"?>  
<configuration>  
  
<logger name="com.cy" level="TRACE" />  
<appender name="FILE"  
class="ch.qos.logback.core.rolling.RollingFileAppender">  
<rollingPolicy  
class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">  
<!-- 文件门路, 定义了日志的切分形式 ---- 把每一天的日志归档到一个文件中, 以避免日志填满整个磁盘空间 -->  
<fileNamePattern>logs/context-log.%d{yyyy-MM-dd}.log  
</fileNamePattern>  
<!-- 只保留最近 30 天的日志 -->  
<maxHistory>30</maxHistory>  
</rollingPolicy>  
<encoder charset="UTF-8">  
<pattern>[%-5level] %date --%thread-- [%logger] %msg %n</pattern>  
</encoder>  
</appender>  
  
<appender name="ASYNC_FILE"  
class="ch.qos.logback.classic.AsyncAppender">  
<discardingThreshold>0</discardingThreshold>  
<queueSize>256</queueSize>  
<appender-ref ref="FILE" />  
</appender>  
  
<root level="debug">  
<appender-ref ref="ASYNC_FILE" />  
</root>  
  
</configuration>

第三步:构建 AsyncLoggingCache

package com.cy.java.cache;  
  
import org.slf4j.Logger;  
import org.slf4j.LoggerFactory;  
  
/**  
* 通过此对象异步记录查问操作的命中率  
* 1)抉择日志库  
* 2)执行异步写操作。*/  
public class AsyncLoggingCache implements Cache {  
 // 日志门面利用 
 private static Logger log=LoggerFactory.getLogger(LoggingCache.class);  
private Cache cache;  
/** 示意申请次数 */  
private int requests;  
/** 命中次数(命中示意从缓存中取到数据了)*/  
private int hits;  
public AsyncLoggingCache(Cache cache) {this.cache=cache;}  
@Override  
public void putObject(Object key, Object value) {cache.putObject(key, value);  
}  
@Override  
public Object getObject(Object key) {  
requests++;  
 Object obj=cache.getObject(key);  
 if(obj!=null)hits++;  
 // 记录日志耗时 
 log.info("Cache hit Ratio:{}",hits*1.0/requests);  
return obj;  
}  
@Override  
  
public Object removeObject(Object key) {return cache.removeObject(key);  
}  
@Override  
public void clear() {cache.clear();  
}  
@Override  
public int size() {return cache.size();  
}  
public static void main(String[] args) {  
Cache cache= 

 new AsyncLoggingCache(new PerpetualCache());  
cache.putObject("A", 100);  
cache.putObject("B", 200);  
cache.putObject("C", 300);  
cache.putObject("D", 400);  
//System.out.println(cache); 
cache.getObject("E");  
cache.getObject("A");  
cache.getObject("B");  
}  
  
}

Kryo 构建序列化 Cache

第一步:增加依赖

<dependency>  
 <groupId>com.esotericsoftware</groupId>  
 <artifactId>kryo</artifactId>  
 <version>5.0.0-RC5</version>  
</dependency>

第二步:构建我的项目工具类

public class KryoUtils {  
  
/**  
* 多线程并发执行时,可能会呈现线程不平安,具体起因是什么?* 1)多个线程的并发  
* 2)多个线程有数据共享  
* 3)多个线程在共享数据集上的操作不是原子操作  
* * 剖析:当呈现了线程不平安,如何进行批改来保障线程平安  
* 1)将多线程改为单线程。* 2)勾销共享 (例如在以后利用中咱们一个线程一个 Kryo 对象)  
* 3)加锁 +CAS  
* * ThreadLocal 提供了这样的一种机制:* 1)能够将对象绑定到以后线程(其实是将对象存储到以后线程的 map 中)* 2)能够从以后线程获取绑定的对象(从以后线程的 map 中获取对象)  
*/  
static private final ThreadLocal<Kryo> kryos = new ThreadLocal<Kryo>() {protected Kryo initialValue() {Kryo kryo = new Kryo();  
  // Configure the Kryo instance. 
  kryo.setRegistrationRequired(false);  
  //.... 
  return kryo;  
  };  
 };  
 public static Object deserialize(byte[] array){Kryo kryo=kryos.get();  
 Input input = new Input(new ByteArrayInputStream(array));  
 Object obj=kryo.readClassAndObject(input);  
return obj;  
 }  
 public static byte[] serialize(Object object){  
 // 从以后线程获取 kryo 对象,以后线程没有会调用 ThreadLocal 的 initialValue 办法创建对象并绑定线程 
 Kryo kryo=kryos.get();  
 ByteArrayOutputStream bos=new ByteArrayOutputStream();  
 Output output = new Output(bos);  
 kryo.writeClassAndObject(output, object);  
  output.close();  
 return bos.toByteArray();}  
 }

> 构建高性能序列化 Cache

public class KryoSerializedCache implements Cache {  
  
private Cache cache;  
public KryoSerializedCache(Cache cache) {this.cache=cache;}  
  
@Override  
public void putObject(Object key, Object value) {  
//1. 将对象序列化 
byte[] array=KryoUtils.serialize(value);  
//2. 将序列化后的字节数组援用存储到 cache 
cache.putObject(key,array);  
}  
  
@Override  
public Object getObject(Object key) {  
//1. 基于 key 获取缓存中的字节数组援用 
byte[] array=(byte[])cache.getObject(key);  
//2. 将字节数组反序列化为对象 
return KryoUtils.deserialize(array);  
}  
  
@Override  
public Object removeObject(Object key) {return KryoUtils.deserialize((byte[])cache.removeObject(key)); 

正文完
 0