共计 6599 个字符,预计需要花费 17 分钟才能阅读完成。
题目
题目链接:餐馆营业额变动增长
你是餐馆的老板,当初你想剖析一下可能的营业额变动增长(每天至多有一位顾客)。
计算以 7 天(某日期 + 该日期前的 6 天)为一个时间段的顾客生产平均值。average_amount 要 保留两位小数。
后果按 visited_on 升序排序。
返回后果格局的例子如下。
Create table If Not Exists Customer (customer_id int, name varchar(20), visited_on date, amount int);
Truncate table Customer;
insert into Customer (customer_id, name, visited_on, amount) values ('1', 'Jhon', '2019-01-01', '100');
insert into Customer (customer_id, name, visited_on, amount) values ('2', 'Daniel', '2019-01-02', '110');
insert into Customer (customer_id, name, visited_on, amount) values ('3', 'Jade', '2019-01-03', '120');
insert into Customer (customer_id, name, visited_on, amount) values ('4', 'Khaled', '2019-01-04', '130');
insert into Customer (customer_id, name, visited_on, amount) values ('5', 'Winston', '2019-01-05', '110');
insert into Customer (customer_id, name, visited_on, amount) values ('6', 'Elvis', '2019-01-06', '140');
insert into Customer (customer_id, name, visited_on, amount) values ('7', 'Anna', '2019-01-07', '150');
insert into Customer (customer_id, name, visited_on, amount) values ('8', 'Maria', '2019-01-08', '80');
insert into Customer (customer_id, name, visited_on, amount) values ('9', 'Jaze', '2019-01-09', '110');
insert into Customer (customer_id, name, visited_on, amount) values ('1', 'Jhon', '2019-01-10', '130');
insert into Customer (customer_id, name, visited_on, amount) values ('3', 'Jade', '2019-01-10', '150');
-- 工夫不间断的例子
insert into Customer (customer_id, name, visited_on, amount) values ('1', 'Jhon', '2019-01-01', '100');
insert into Customer (customer_id, name, visited_on, amount) values ('4', 'Khaled', '2019-01-04', '130');
insert into Customer (customer_id, name, visited_on, amount) values ('5', 'Winston', '2019-01-05', '110');
insert into Customer (customer_id, name, visited_on, amount) values ('6', 'Elvis', '2019-01-06', '140');
insert into Customer (customer_id, name, visited_on, amount) values ('7', 'Anna', '2019-01-07', '150');
insert into Customer (customer_id, name, visited_on, amount) values ('8', 'Maria', '2019-01-08', '80');
insert into Customer (customer_id, name, visited_on, amount) values ('9', 'Jaze', '2019-01-09', '110');
insert into Customer (customer_id, name, visited_on, amount) values ('1', 'Jhon', '2019-01-10', '130');
insert into Customer (customer_id, name, visited_on, amount) values ('3', 'Jade', '2019-01-10', '150');
Customer 表:
+-------------+--------------+--------------+-------------+
| customer_id | name | visited_on | amount |
+-------------+--------------+--------------+-------------+
| 1 | Jhon | 2019-01-01 | 100 |
| 2 | Daniel | 2019-01-02 | 110 |
| 3 | Jade | 2019-01-03 | 120 |
| 4 | Khaled | 2019-01-04 | 130 |
| 5 | Winston | 2019-01-05 | 110 |
| 6 | Elvis | 2019-01-06 | 140 |
| 7 | Anna | 2019-01-07 | 150 |
| 8 | Maria | 2019-01-08 | 80 |
| 9 | Jaze | 2019-01-09 | 110 |
| 1 | Jhon | 2019-01-10 | 130 |
| 3 | Jade | 2019-01-10 | 150 |
+-------------+--------------+--------------+-------------+
在 SQL 中,(customer_id, visited_on) 是该表的主键。该表蕴含一家餐馆的顾客交易数据。visited_on 示意 (customer_id) 的顾客在 visited_on 那天拜访了餐馆。amount 是一个顾客某一天的生产总额。输入:+--------------+--------------+----------------+
| visited_on | amount | average_amount |
+--------------+--------------+----------------+
| 2019-01-07 | 860 | 122.86 |
| 2019-01-08 | 840 | 120 |
| 2019-01-09 | 840 | 120 |
| 2019-01-10 | 1000 | 142.86 |
+--------------+--------------+----------------+
解释:第一个七天生产平均值从 2019-01-01 到 2019-01-07 是 restaurant-growth/restaurant-growth/ (100 + 110 + 120 + 130 + 110 + 140 + 150)/7 = 122.86
第二个七天生产平均值从 2019-01-02 到 2019-01-08 是 (110 + 120 + 130 + 110 + 140 + 150 + 80)/7 = 120
第三个七天生产平均值从 2019-01-03 到 2019-01-09 是 (120 + 130 + 110 + 140 + 150 + 80 + 110)/7 = 120
第四个七天生产平均值从 2019-01-04 到 2019-01-10 是 (130 + 110 + 140 + 150 + 80 + 110 + 130 + 150)/7 = 142.86
本题考查的常识是如何累加一段时间区间内的值
有两种实现形式:
- 应用窗口函数,窗口函数比拟好了解应用
6 PRECEDING AND current ROW
就能查找进去了(计划一) - 应用自连,连贯条件不太容易想到,须要应用
DATEDIFF
函数,这个函数能够计算两个日期之间的天数,而后应用BETWEEN
条件(计划二和计划三)
解析
-
要晓得过来
7
天的均匀消费额,须要先晓得每天的总消费额,作为长期表tmp1
select visited_on, sum(amount) sum_amount from Customer group by visited_on
+-------------+--------------+ | visited_on | sum_amount | +-------------+--------------+ | 2019-01-01 | 100 | | 2019-01-02 | 110 | | 2019-01-03 | 120 | | 2019-01-04 | 130 | | 2019-01-05 | 110 | | 2019-01-06 | 140 | | 2019-01-07 | 150 | | 2019-01-08 | 80 | | 2019-01-09 | 110 | | 2019-01-10 | 280 | +-------------+--------------+
-
应用窗口函数,计算过来
7
天的总的消费额,作为长期表tmp2
select sum(sum_amount) sum_amount over (order by to_days(visited_on) range between 6 preceding and current row) as sum_amount from tmp1
| visited_on | sum_amount | +-------------+--------------+ | 2019-01-01 | 100 | | 2019-01-02 | 210 | | 2019-01-03 | 330 | | 2019-01-04 | 460 | | 2019-01-05 | 570 | | 2019-01-06 | 710 | | 2019-01-07 | 860 | | 2019-01-08 | 840 | | 2019-01-09 | 840 | | 2019-01-10 | 1000 | +-------------+--------------+
-
计算过来
7
天的均匀消费额,作为长期表tmp3
select visited_on, sum_amount amount, sum_amount / 7 as average_amount from tmp2
| visited_on | sum_amount | average_amount | +-------------+--------------+----------------+ | 2019-01-01 | 100 | 14.2857 | | 2019-01-02 | 210 | 30.0000 | | 2019-01-03 | 330 | 47.1429 | | 2019-01-04 | 460 | 65.7143 | | 2019-01-05 | 570 | 81.4286 | | 2019-01-06 | 710 | 101.4286 | | 2019-01-07 | 860 | 122.8571 | | 2019-01-08 | 840 | 120.0000 | | 2019-01-09 | 840 | 120.0000 | | 2019-01-10 | 1000 | 142.8571 | +-------------+-------------+----------------+
- 筛选出计算数据大于等于七天的数据
- 须要晓得表中日期最小的一天,作为长期表 `tmp4`
`select min(visited_on) min_visited_on from Customer`
```
| min_visited_on |
+-----------------+
| 2019-01-01 |
+-----------------+
```
- 应用 `datediff(expr1, expr2)` 函数,计算两个日期之间的天数,这里须要大于等于 `6` 天
`select visited_on, amount, round(average_amount, 2) average_amount from tmp3 where datediff(visited_on, (select min(visited_on) from Customer)) >= 6`
```
| visited_on | amount | average_amount |
+-------------+--------------+----------------+
| 2019-01-07 | 860 | 122.8571 |
| 2019-01-08 | 840 | 120.0000 |
| 2019-01-09 | 840 | 120.0000 |
| 2019-01-10 | 1000 | 142.8571 |
+-------------+--------------+----------------+
```
最终 sql
语句如下:
SELECT
visited_on,
sum_amount amount,
ROUND(sum_amount / 7, 2) average_amount
FROM (
SELECT
visited_on,
SUM(sum_amount) OVER (ORDER BY to_days(visited_on) RANGE BETWEEN 6 PRECEDING AND current ROW ) sum_amount
FROM (
SELECT
visited_on,
SUM(amount) sum_amount
FROM Customer
GROUP BY visited_on
) tmp1
) tmp2
WHERE DATEDIFF(visited_on, ( SELECT MIN( visited_on) FROM Customer )) >= 6;
下面 sql
能够简化一下,不过有问题,就是如果工夫不间断,排序不会跳过。
也就是说 rk > 7
只能筛选出间断 7
天的数据
SELECT
visited_on,
amount,
SUM(amount / 7, 2) average_amount
FROM (
SELECT
visited_on,
RANK() OVER ( ORDER BY visited_on) AS rk,
SUM(SUM( amount)) OVER (ORDER BY visited_on RANGE INTERVAL 7-1 DAY PRECEDING) AS amount
FROM Customer GROUP BY visited_on
) AS tep WHERE rk >= 7 ORDER BY 1
办法二
此办法是应用自连,连贯的条件是工夫间断 7
天,这个办法如果工夫不间断,就会有问题
WITH t AS (SELECT visited_on, SUM( amount) amount FROM Customer GROUP BY visited_on
)
SELECT a.visited_on, SUM(b.amount) amount, ROUND(AVG( b.amount), 2 ) average_amount
FROM t a, t b
WHERE DATEDIFF(a.visited_on, b.visited_on) BETWEEN 0 AND 6
GROUP BY a.visited_on COUNT(*) = 7;
办法三
SELECT
a.visited_on,
sum(b.amount) AS amount,
round(sum( b.amount) / 7, 2 ) AS average_amount
FROM
(SELECT DISTINCT visited_on FROM Customer) a
JOIN Customer b ON datediff(a.visited_on, b.visited_on) BETWEEN 0 AND 6
WHERE
a.visited_on >= (SELECT min( visited_on) FROM Customer ) + 6
GROUP BY a.visited_on
ORDER BY visited_on
往期 MySQL 题目
- MySQL 题目
- LeetCode mysql 刷题一:计算非凡奖金 | 买下所有产品的客户
- LeetCode mysql 刷题二:电影评分——判断日期的五种办法
- LeetCode mysql 刷题三:确认率——MySQL 中的 null 解决 | 判断三角形的四种办法
正文完