共计 3853 个字符,预计需要花费 10 分钟才能阅读完成。
go-event 是一个在 Docker 我的项目中应用到的一个事件散发组件,实现了惯例的播送,队列等事件散发模型,代码简洁明了,也适宜初学者对 Go 语言的入门,对 channel 用来同步,通信也会加深了解。
外围数据结构
Event
type Event interface{}
Event 被封装为一个空接口,承受任意类型。在 go-events 示意一个能够被散发的事件。
interface{}的底层相似于 c 语言中的 void*, 但比void* 弱小很多,比方 interface{}保留了指向对象的指针和类型,而 c 程序员应用 void* 时,必须本人去保障对象的类型是正确的)
Sink
type Sink interface {Write(event Event) error
Close() error}
Sink 是一个用来散发事件(Event)的构造。能够当作事件的解决者,应用接口的形式申明。只有对象实现了这两个办法,就能够被当作一个 Sink。
核型办法
-
Write(event Event) error
- 定义了事件如何被散发的策略。
-
Close() error
- 当 Sink 被敞开的解决策略。
go-event 外围就是围绕 Sink 做文章,docker 官网给出了一个 http 的例子,就是当调用 Write 时,发动一次 post 申请。:
func (h *httpSink) Write(event Event) error {p, err := json.Marshal(event)
if err != nil {return err}
body := bytes.NewReader(p)
resp, err := h.client.Post(h.url, "application/json", body)
if err != nil {return err}
defer resp.Body.Close()
if resp.Status != 200 {return errors.New("unexpected status")
}
return nil
}
// implement (*httpSink).Close()
实现模型
到此为止,sink 定义了事件散发的根本单位。在 go-event 中,封装了播送,音讯队列两种音讯散发的模型,具体来说,就是实现了 Sink 接口的两个构造体。
Boadcaster
type Broadcaster struct {sinks []Sink // 所蕴含的 Sink
events chan Event// 同步 Event 的 channel
adds chan configureRequest //adds 和 remove 必须保障 thread-safe,所以采纳 channel 同步
removes chan configureRequest
shutdown chan struct{}
closed chan struct{}
once sync.Once
}
Boardcaster 由多个 Sink 组成,当 Boardcaster 接管到一个事件时,会调用本身蕴含的所有 Sink 的 Write()办法
go-events 设计之初就实现协程之间的音讯散发,须要保障 thread-safe,所以对 event 的解决,增加,移除 Sink 都应用管道来通信。这也是 Go 的一个应用准则:
应用通信来共享内存, 而不是通过共享内存来通信
在 Broadcaster 中所有的临界资源 (sinks,event) 都通过本身的 run()函数对立治理,外界则通过相应的 channel 同步给 Broadcaster
例如 Write()
func (b *Broadcaster) Write(event Event) error {
select {
case b.events <- event:
case <-b.closed:
return ErrSinkClosed
}
return nil
}
能够看到增减 sink 都是通过向对应的 channel 写入数据进行的。
func (b *Broadcaster) Add(sink Sink) error {return b.configure(b.adds, sink) // will be block until ch can be writen
}
func (b *Broadcaster) configure(ch chan configureRequest, sink Sink) error {response := make(chan error, 1)
for {
select {
case ch <- configureRequest{
sink: sink,
response: response}:
ch = nil //?case err := <-response:
return err
case <-b.closed:
return ErrSinkClosed
}
}
}
外围 run 函数的实现, 监听 Boardcast 管道上的相应事件,并作出解决。
func (b *Broadcaster) run() {defer close(b.closed)
// 将 remove 封装了一下,因为上面两处都会用到
remove := func(target Sink) {
for i, sink := range b.sinks {
if sink == target {b.sinks = append(b.sinks[:i], b.sinks[i+1:]...)
break
}
}
}
// 轮训解决 channel 上的事件
for {
select {
case event := <-b.events: // 有事件到来,进行播送
for _, sink := range b.sinks {if err := sink.Write(event); err != nil {
if err == ErrSinkClosed {
// remove closed sinks
remove(sink)
continue
}
logrus.WithField("event", event).WithField("events.sink", sink).WithError(err).
Errorf("broadcaster: dropping event")
}
}
case request := <-b.adds: // 减少 sink 事件
// while we have to iterate for add/remove, common iteration for
// send is faster against slice.
var found bool
for _, sink := range b.sinks {
if request.sink == sink {
found = true
break
}
}
if !found {b.sinks = append(b.sinks, request.sink)
}
// b.sinks[request.sink] = struct{}{}
request.response <- nil // 唤醒阻塞的 configure()函数
case request := <-b.removes:// 删除 sink 事件
remove(request.sink)
request.response <- nil
case <-b.shutdown:
// close all the underlying sinks
for _, sink := range b.sinks {if err := sink.Close(); err != nil && err != ErrSinkClosed {logrus.WithField("events.sink", sink).WithError(err).
Errorf("broadcaster: closing sink failed")
}
}
return
}
}
}
queue
queue 应用 contaienr/list 实现了典型的生产消费者模型
type Queue struct {
dst Sink
events *list.List
cond *sync.Cond
mu sync.Mutex
closed bool
}
外围函数 run(), 在队列中取出下一个 event,交给本身的 sink 解决,在没有事件队列的状况下,eq.next()总是阻塞的(应用条件变量进行同步)
func (eq *Queue) run() {
for {event := eq.next()
if event == nil {return // nil block means event queue is closed.}
if err := eq.dst.Write(event); err != nil {
logrus.WithFields(logrus.Fields{
"event": event,
"sink": eq.dst,
}).WithError(err).Debug("eventqueue: dropped event")
}
}
}
生产者:q.next()
消费者:write()
func (eq *Queue) Write(event Event) error {eq.mu.Lock()
defer eq.mu.Unlock()
if eq.closed {return ErrSinkClosed}
eq.events.PushBack(event)
eq.cond.Signal() // signal waiters
return nil
}
func (eq *Queue) next() Event {eq.mu.Lock()
defer eq.mu.Unlock()
for eq.events.Len() < 1 {
if eq.closed {eq.cond.Broadcast()
return nil
}
eq.cond.Wait()}
front := eq.events.Front()
block := front.Value.(Event)
eq.events.Remove(front)
return block
}