几天前,我写了一篇解释go通道准则。那篇文章在reddit 和 HN上失去了很多反对。然而go通道设计细节失去了许多批评。
我总结批评内容如下:
- 不批改channel状态的状况下,没有对立和简略的形式去判断channel是否敞开。
- 敞开曾经敞开的channel会panic,所以敞开channel是十分危险的如果不晓得channel是否敞开。
- 向敞开的channel发送值会panic,所以发送值到channel是十分危险的如果不晓得channel是否敞开。
这些评论看起来是正当的(实际上不然),是的,并没有内置的函数去判断channel是否敞开。
如果你能确定不再(未来)往channel发送值,的确有简略的办法去判断channel是否敞开,为了不便了解,请看上面的列子:
package main
import "fmt"
type T int
func IsClosed(ch <-chan T) bool {
select {
case <-ch:
return true
default:
}
return false
}
func main() {
c := make(chan T)
fmt.Println(IsClosed(c)) // false
close(c)
fmt.Println(IsClosed(c)) // true
}
就像下面提到的,没有对立的形式去查看channel是否敞开。
实际上,即便有简略的内置办法closed 去判断channel是否敞开,就像内置函数len 判断channel 元素个数,价值无限。起因是被查看的channel可能会在函数调用并返回后状态曾经扭转,所以返回的值并不能反映最新的channel状态。不过如果调用closed(ch)返回true能够进行向channel发送值,然而如果调用closed(ch),返回false,则敞开通道或持续向通道发送值是不平安的。
channel的敞开准则
最根本的准则是不要要接受者端敞开channel,也不要在有多个并发发送者的状况下敞开channel。换句话说,咱们只能在发送端敞开channel,并且是惟一的发送者。
(上面咱们将称下面的准则为敞开准则)
当然,并没有对立的准则去敞开channel。对立的准则便是不要敞开(或者发送值)曾经敞开的channel。如果咱们能保障没有协程发送或者敞开一个没有敞开且不为nil的channel,那咱们能够平安敞开这个channel。然而,对于接受者或或者多个发送者中作出这样的保障往往须要很多致力,而且常常使代码更为简单。相同,听从channel敞开准则绝对比较简单。
粗犷的敞开channel的解决方案
如果你无论如也想从接收端或者多个发送者中一个敞开channel,你能够应用谬误复原机制阻止恐慌的可能来防止程序宕机。上面是一个示例(假如channel 的类型是T):
func SafeClose(ch chan T) (justClosed bool) {
defer func() {
if recover() != nil {
// The return result can be altered
// in a defer function call.
justClosed = false
}
}()
// assume ch != nil here.
close(ch) // panic if ch is closed
return true // <=> justClosed = true; return
}
这种解决方案,显然违反了敞开准则。
同样的问题是向潜在的已敞开的channel发送值。
func SafeSend(ch chan T, value T) (closed bool) {
defer func() {
if recover() != nil {
closed = true
}
}()
ch <- value // panic if ch is closed
return false // <=> closed = false; return
}
不仅突破了敞开准则,在运行过程中可能产生数据竞争。
礼貌的敞开channel
许多人喜爱用async.once敞开channel:
type MyChannel struct {
C chan T
once sync.Once
}
func NewMyChannel() *MyChannel {
return &MyChannel{C: make(chan T)}
}
func (mc *MyChannel) SafeClose() {
mc.once.Do(func() {
close(mc.C)
})
}
当然,你也能够用async.Mutex 防止敞开channel屡次。
ype MyChannel struct {
C chan T
closed bool
mutex sync.Mutex
}
func NewMyChannel() *MyChannel {
return &MyChannel{C: make(chan T)}
}
func (mc *MyChannel) SafeClose() {
mc.mutex.Lock()
defer mc.mutex.Unlock()
if !mc.closed {
close(mc.C)
mc.closed = true
}
}
func (mc *MyChannel) IsClosed() bool {
mc.mutex.Lock()
defer mc.mutex.Unlock()
return mc.closed
}
这种形式可能比拟礼貌,然而并不能防止数据竞争。目前,Go运行机制并不能保障敞开channel和向channel发送值同时执行不会产生数据竞争。如果对同一channel执行通道发送操作的同时调用SafeClose函数,则可能会产生数据竞争(只管这种数据竞争个别有害的)。
优雅的敞开channel
上述SafeSend函数的毛病是,在select块中case关键字分枝上不能调用作为发送操作;另一个毛病是很多人包含我认为在下面的SafeSend和SafeClose函数中应用panic/
recover` 和async 包是不优雅的。接下来,针对各种解状况介绍一些不应用包的纯channel解决方案。
(在上面的示例中,sync.WaitGroup
齐全用于示例,理论中可能并不应用)
多个接收者,一个发送者,发送者敞开channel示意‘没有值能够发送’
这是一个非常简单的状况,仅仅是让发送者在不想发送数据时候敞开channel。
package main
import (
"time"
"math/rand"
"sync"
"log"
)
func main() {
rand.Seed(time.Now().UnixNano())
log.SetFlags(0)
// ...
const Max = 100000
const NumReceivers = 100
wgReceivers := sync.WaitGroup{}
wgReceivers.Add(NumReceivers)
// ...
dataCh := make(chan int)
// the sender
go func() {
for {
if value := rand.Intn(Max); value == 0 {
// The only sender can close the
// channel at any time safely.
close(dataCh)
return
} else {
dataCh <- value
}
}
}()
// receivers
for i := 0; i < NumReceivers; i++ {
go func() {
defer wgReceivers.Done()
// Receive values until dataCh is
// closed and the value buffer queue
// of dataCh becomes empty.
for value := range dataCh {
log.Println(value)
}
}()
}
wgReceivers.Wait()
}
一个接收者,多个发送者,惟一的接收者通过敞开额定的channel通道示意‘请进行发送值到channel’
这是一个比下面较简单的状况。咱们不能为阻止数据传输让接收者敞开数据channel,这样违反了channel敞开的准则,然而咱们能够通过敞开额定的信号channel去告诉发送者进行发送值。
package main
import (
"time"
"math/rand"
"sync"
"log"
)
func main() {
rand.Seed(time.Now().UnixNano())
log.SetFlags(0)
// ...
const Max = 100000
const NumSenders = 1000
wgReceivers := sync.WaitGroup{}
wgReceivers.Add(1)
// ...
dataCh := make(chan int)
stopCh := make(chan struct{})
// stopCh is an additional signal channel.
// Its sender is the receiver of channel
// dataCh, and its receivers are the
// senders of channel dataCh.
// senders
for i := 0; i < NumSenders; i++ {
go func() {
for {
// The try-receive operation is to try
// to exit the goroutine as early as
// possible. For this specified example,
// it is not essential.
select {
case <- stopCh:
return
default:
}
// Even if stopCh is closed, the first
// branch in the second select may be
// still not selected for some loops if
// the send to dataCh is also unblocked.
// But this is acceptable for this
// example, so the first select block
// above can be omitted.
select {
case <- stopCh:
return
case dataCh <- rand.Intn(Max):
}
}
}()
}
// the receiver
go func() {
defer wgReceivers.Done()
for value := range dataCh {
if value == Max-1 {
// The receiver of channel dataCh is
// also the sender of stopCh. It is
// safe to close the stop channel here.
close(stopCh)
return
}
log.Println(value)
}
}()
// ...
wgReceivers.Wait()
}
正如正文中说的,信号channel的发送者是数据接收者channel。信号channel听从channel敞开准则,只能被他的发送者敞开。
在下面的示例中,dataCh不会被敞开。是的,Channel不是必须被敞开的。一个channel无论是否敞开,当没有一个协程援用的时候,最终就会被GC回收。所以这里优雅的敞开channel就是不敞开channel。
M个接收者,N个发送者,任何一个通过中间人敞开信号channel示意‘让咱们完结游戏吧’
这是最简单的状况。咱们不能让任何一个发送者和接收者敞开数据channel。咱们也不能让任何一个接收者敞开信号channel告诉所有的接收者和发送者完结游戏。其中任何一种形式都突破了敞开准则。然而,咱们能够引入一个两头角色去敞开信号channel。在上面例子中有一个技巧是如何应用try-send操作去告诉中间人敞开信号通道。
package main
import (
"time"
"math/rand"
"sync"
"log"
"strconv"
)
func main() {
rand.Seed(time.Now().UnixNano())
log.SetFlags(0)
// ...
const Max = 100000
const NumReceivers = 10
const NumSenders = 1000
wgReceivers := sync.WaitGroup{}
wgReceivers.Add(NumReceivers)
// ...
dataCh := make(chan int)
stopCh := make(chan struct{})
// stopCh is an additional signal channel.
// Its sender is the moderator goroutine shown
// below, and its receivers are all senders
// and receivers of dataCh.
toStop := make(chan string, 1)
// The channel toStop is used to notify the
// moderator to close the additional signal
// channel (stopCh). Its senders are any senders
// and receivers of dataCh, and its receiver is
// the moderator goroutine shown below.
// It must be a buffered channel.
var stoppedBy string
// moderator
go func() {
stoppedBy = <-toStop
close(stopCh)
}()
// senders
for i := 0; i < NumSenders; i++ {
go func(id string) {
for {
value := rand.Intn(Max)
if value == 0 {
// Here, the try-send operation is
// to notify the moderator to close
// the additional signal channel.
select {
case toStop <- "sender#" + id:
default:
}
return
}
// The try-receive operation here is to
// try to exit the sender goroutine as
// early as possible. Try-receive and
// try-send select blocks are specially
// optimized by the standard Go
// compiler, so they are very efficient.
select {
case <- stopCh:
return
default:
}
// Even if stopCh is closed, the first
// branch in this select block might be
// still not selected for some loops
// (and for ever in theory) if the send
// to dataCh is also non-blocking. If
// this is unacceptable, then the above
// try-receive operation is essential.
select {
case <- stopCh:
return
case dataCh <- value:
}
}
}(strconv.Itoa(i))
}
// receivers
for i := 0; i < NumReceivers; i++ {
go func(id string) {
defer wgReceivers.Done()
for {
// Same as the sender goroutine, the
// try-receive operation here is to
// try to exit the receiver goroutine
// as early as possible.
select {
case <- stopCh:
return
default:
}
// Even if stopCh is closed, the first
// branch in this select block might be
// still not selected for some loops
// (and forever in theory) if the receive
// from dataCh is also non-blocking. If
// this is not acceptable, then the above
// try-receive operation is essential.
select {
case <- stopCh:
return
case value := <-dataCh:
if value == Max-1 {
// Here, the same trick is
// used to notify the moderator
// to close the additional
// signal channel.
select {
case toStop <- "receiver#" + id:
default:
}
return
}
log.Println(value)
}
}
}(strconv.Itoa(i))
}
// ...
wgReceivers.Wait()
log.Println("stopped by", stoppedBy)
}
在这个例子中,仍然守住了channel敞开的准则。
请留神,toStop的缓冲大小是1。这是为了防止当中间人筹备从toStop接管信号之前信号失落。
咱们也能够设置toStop的缓冲大小是发送者和接收者之和。那样咱们就不须要try-send的select块去告诉中间人。
...
toStop := make(chan string, NumReceivers + NumSenders)
...
value := rand.Intn(Max)
if value == 0 {
toStop <- "sender#" + id
return
}
...
if value == Max-1 {
toStop <- "receiver#" + id
return
}
...
“多个接收者,单个发送者”变体的情景:敞开申请是通过第三方
有时候,敞开信号是由第三方收回。在这种状况下,咱们能够用额定的信号去告诉发送者敞开channel。例如:
package main
import (
"time"
"math/rand"
"sync"
"log"
)
func main() {
rand.Seed(time.Now().UnixNano())
log.SetFlags(0)
// ...
const Max = 100000
const NumReceivers = 100
const NumThirdParties = 15
wgReceivers := sync.WaitGroup{}
wgReceivers.Add(NumReceivers)
// ...
dataCh := make(chan int)
closing := make(chan struct{}) // signal channel
closed := make(chan struct{})
// The stop function can be called
// multiple times safely.
stop := func() {
select {
case closing<-struct{}{}:
<-closed
case <-closed:
}
}
// some third-party goroutines
for i := 0; i < NumThirdParties; i++ {
go func() {
r := 1 + rand.Intn(3)
time.Sleep(time.Duration(r) * time.Second)
stop()
}()
}
// the sender
go func() {
defer func() {
close(closed)
close(dataCh)
}()
for {
select{
case <-closing: return
default:
}
select{
case <-closing: return
case dataCh <- rand.Intn(Max):
}
}
}()
// receivers
for i := 0; i < NumReceivers; i++ {
go func() {
defer wgReceivers.Done()
for value := range dataCh {
log.Println(value)
}
}()
}
wgReceivers.Wait()
}
‘多个发送者’状况的变体:敞开channel必须通知所有的接收者曾经不再发送数据
在下面N发送者的状况,为了坚守channel敞开准则,咱们防止敞开channel。然而,有时候,咱们必须敞开channel来通知所有接收者不再发送数据。在这种状况下,咱们能够通过引入两头channel,将N-sender情景转化为One-sender情景。两头channel只有一个发送者,所以咱们能够通过敞开这个channel来代替敞开原始数据channel。
package main
import (
"time"
"math/rand"
"sync"
"log"
"strconv"
)
func main() {
rand.Seed(time.Now().UnixNano())
log.SetFlags(0)
// ...
const Max = 1000000
const NumReceivers = 10
const NumSenders = 1000
const NumThirdParties = 15
wgReceivers := sync.WaitGroup{}
wgReceivers.Add(NumReceivers)
// ...
dataCh := make(chan int) // will be closed
middleCh := make(chan int) // will never be closed
closing := make(chan string) // signal channel
closed := make(chan struct{})
var stoppedBy string
// The stop function can be called
// multiple times safely.
stop := func(by string) {
select {
case closing <- by:
<-closed
case <-closed:
}
}
// the middle layer
go func() {
exit := func(v int, needSend bool) {
close(closed)
if needSend {
dataCh <- v
}
close(dataCh)
}
for {
select {
case stoppedBy = <-closing:
exit(0, false)
return
case v := <- middleCh:
select {
case stoppedBy = <-closing:
exit(v, true)
return
case dataCh <- v:
}
}
}
}()
// some third-party goroutines
for i := 0; i < NumThirdParties; i++ {
go func(id string) {
r := 1 + rand.Intn(3)
time.Sleep(time.Duration(r) * time.Second)
stop("3rd-party#" + id)
}(strconv.Itoa(i))
}
// senders
for i := 0; i < NumSenders; i++ {
go func(id string) {
for {
value := rand.Intn(Max)
if value == 0 {
stop("sender#" + id)
return
}
select {
case <- closed:
return
default:
}
select {
case <- closed:
return
case middleCh <- value:
}
}
}(strconv.Itoa(i))
}
// receivers
for range [NumReceivers]struct{}{} {
go func() {
defer wgReceivers.Done()
for value := range dataCh {
log.Println(value)
}
}()
}
// ...
wgReceivers.Wait()
log.Println("stopped by", stoppedBy)
}
更多情景?
应该还会有更多下面情景的变体,然而下面展现了最一般和最罕用的状况。通过奇妙地应用channel(和其余并发编程技术),对于每种状况变动,都能够找到一个放弃通道敞开准则的解决方案。
论断
没有情景逼迫你突破channel敞开的准则,如果你遇到这种状况,请从新思考你的设计和重构你的代码。
浏览原文