关于go:用-Go-写一个简单消息队列二客户端处理和-channel-设计

38次阅读

共计 4000 个字符,预计需要花费 10 分钟才能阅读完成。

上一篇文章咱们定义了音讯体和根底工具,这一篇咱们开始着手客户端的处理函数和 channel 的根底设计。

客户端处理函数

这里所谓的客户端指的是消费者,处理函数也就是解决消费者同咱们服务之间的 tcp 连贯。咱们定义一个构造体 Client,外面蕴含有连贯和状态字段,而后就是编写读写状态和 tcp 连贯的相干函数。

client.go

package server

import (
    "encoding/binary"
    "io"
    "log"
)

type Client struct {
    conn  io.ReadWriteCloser
    name  string
    state int
}

func NewClient(conn io.ReadWriteCloser, name string) *Client {return &Client{conn, name, -1}
}

func (c *Client) String() string {return c.name}

func (c *Client) GetState() int {return c.state}

func (c *Client) SetState(state int) {c.state = state}

func (c *Client) Read(data []byte) (int, error) {return c.conn.Read(data)
}

func (c *Client) Write(data []byte) (int, error) {
    var err error

    err = binary.Write(c.conn, binary.BigEndian, int32(len(data)))
    if err != nil {return 0, err}

    n, err := c.conn.Write(data)
    if err != nil {return 0, err}

    return n + 4, nil
}

func (c *Client) Close() {log.Printf("CLIENT(%s): closing", c.String())
    c.conn.Close()}

这里的逻辑比较简单,惟一值得一提的是 Write 办法。在给消费者写音讯之前,咱们先往连贯中写入音讯体的长度,固定为 4 个字节,这样客户端读取的时候就能够先读取长度,而后按长度读取音讯。

channel

从上篇文章中咱们能够晓得,channel 是咱们这个音讯队列中的外围数据结构之一,因而它的设计尤为重要。

保护消费者信息

首先,因为咱们的消费者是从 channel 中读取音讯的,所以 channel 中须要保护消费者的信息,并且能够增删消费者。因而咱们先在 channel 构造中保护一个 consumer 数组和两个管道用来接管增删 consumer 的音讯:

type Consumer interface {Close()
}

type Channel struct {
    name                string
    addClientChan       chan util.ChanReq
    removeClientChan    chan util.ChanReq
    clients             []Consumer}

func (c *Channel) AddClient(client Consumer) {log.Printf("Channel(%s): adding client...", c.name)
    doneChan := make(chan interface{})
    c.addClientChan <- util.ChanReq{
        Variable: client,
        RetChan:  doneChan,
    }
    <-doneChan
}

func (c *Channel) RemoveClient(client Consumer) {log.Printf("Channel(%s): removing client...", c.name)
    doneChan := make(chan interface{})
    c.removeClientChan <- util.ChanReq{
        Variable: client,
        RetChan:  doneChan,
    }
    <-doneChan
}

值得注意的是,这里咱们没有间接绑定下面的 Client 构造体,而是形象出了一个 Consumer 接口。这样做的益处是倒转依赖关系,而且能够防止包循环援用。

既然有了接管音讯的管道,那么咱们须要一个常驻后盾的 goroutine 来解决这些音讯,能够称之为事件处理循环,也就是一个 for + select 组合:

// Router handles the events of Channel
func (c *Channel) Router() {
    var clientReq util.ChanReq

    for {
        select {
        case clientReq = <-c.addClientChan:
            client := clientReq.Variable.(Consumer)
            c.clients = append(c.clients, client)
            log.Printf("CHANNEL(%s) added client %#v", c.name, client)
            clientReq.RetChan <- struct{}{}
        case clientReq = <-c.removeClientChan:
            client := clientReq.Variable.(Consumer)
            indexToRemove := -1
            for k, v := range c.clients {
                if v == client {
                    indexToRemove = k
                    break
                }
            }
            if indexToRemove == -1 {log.Printf("ERROR: could not find client(%#v) in clients(%#v)", client, c.clients)
            } else {c.clients = append(c.clients[:indexToRemove], c.clients[indexToRemove+1:]...)
                log.Printf("CHANNEL(%s) removed client %#v", c.name, client)
            }
            clientReq.RetChan <- struct{}{}
        }
    }
}

收发音讯

对于收发音讯,这里咱们应用三个管道来实现:

  • msgChan:这是一个有缓冲管道,用来暂存音讯,超过长度则抛弃音讯(后续会加上长久化到磁盘的性能)
  • incomingMessageChan:用来接管生产者的音讯
  • clientMessageChan:音讯会被发送到这个管道,后续会由消费者拉取

代码如下:

type Channel struct {
    ...
    incomingMessageChan chan *Message
    msgChan             chan *Message
    clientMessageChan   chan *Message
}

func (c *Channel) PutMessage(msg *Message) {c.incomingMessageChan <- msg}

func (c *Channel) PullMessage() *Message {return <-c.clientMessageChan}

func (c *Channel) Router() {
    var clientReq util.ChanReq

    go c.MessagePump()

    for {
        select {
        ...
        case msg := <-c.incomingMessageChan:
            // 避免因 msgChan 缓冲填满时造成阻塞,加上一个 default 分支间接抛弃音讯
            select {
            case c.msgChan <- msg:
                log.Printf("CHANNEL(%s) wrote message", c.name)
            default:
            }
        }
    }
}

// MessagePump send messages to ClientMessageChan
func (c *Channel) MessagePump() {
    var msg *Message

    for {
        select {case msg = <-c.msgChan:}

        c.clientMessageChan <- msg
    }
}

敞开

当 channel 敞开的时候,咱们须要做一些清理的工作,首先咱们减少一个接管敞开信号的管道,在接管到信号时敞开发送音讯的 MessagePump 协程和消费者连贯,代码如下:

type Channel struct {
    ...
    exitChan            chan util.ChanReq
}

func (c *Channel) Router() {
    var (
        ...
        closeChan = make(chan struct{})
    )

    go c.MessagePump(closeChan)

    for {
        select {
        ...
        case closeReq := <-c.exitChan:
            log.Printf("CHANNEL(%s) is closing", c.name)
            close(closeChan)

            for _, consumer := range c.clients {consumer.Close()
            }

            closeReq.RetChan <- nil
        }
    }
}

// MessagePump send messages to ClientMessageChan
func (c *Channel) MessagePump(closeChan chan struct{}) {
    var msg *Message

    for {
        select {
        ...
        case <-closeChan:
            return
        }
        ...
    }
}

func (c *Channel) Close() error {errChan := make(chan interface{})
    c.exitChan <- util.ChanReq{RetChan: errChan,}

    err, _ := (<-errChan).(error)
    return err
}

咱们在事件处理循环中初始化一个管道,并作为参数传递给 MessagePump 协程,当接管到敞开信号时敞开此管道,而后顺次敞开消费者连贯,敞开逻辑就完结了。

channel 的残缺代码如下:

channel.go

此时咱们的目录构造为:

正文完
 0