共计 11541 个字符,预计需要花费 29 分钟才能阅读完成。
摘要:本文由阿里巴巴的陈玉兆分享,次要介绍 Flink 集成 Hudi 的最新版本性能以及疾速上手实际指南。内容包含:
- 背景
- 环境筹备
- Batch 模式的读写
- Streaming 读
- 总结
一、背景
Apache Hudi 是目前最风行的数据湖解决方案之一,Data Lake Analytics[1] 集成了 Hudi 服务高效的数据 MERGE(UPDATE/DELETE)场景;AWS 在 EMR 服务中 预装置 [2] 了 Apache Hudi,为用户提供高效的 record-level updates/deletes 和高效的数据查问治理;Uber [3] 曾经稳固运行 Apache Hudi 服务 4 年多,提供了低提早的数据库同步和高效率的查问[4]。自 2016 年 8 月上线以来,数据湖存储规模曾经超过 100PB[5]。
Apache Flink 作为目前最风行的流计算框架,在流式计算场景有人造的劣势,以后,Flink 社区也在踊跃拥抱 Hudi 社区,施展本身 streaming 写 / 读的劣势,同时也对 batch 的读写做了反对。
Hudi 和 Fink 在 0.8.0 版本做了大量的集成工作[6]。外围的性能包含:
- 实现了新的 Flink streaming writer
- 反对 batch 和 streaming 模式 reader
- 反对 Flink SQL API
Flink streaming writer 通过 state 实现了高效的 index 计划,同时 Hudi 在 UPDATE/DELETE 上的优良设计使得 Flink Hudi 成为以后最有后劲的 CDC 数据入湖计划,因为篇幅关系,将在后续的文章中介绍。
本文用 Flink SQL Client 来简略的演示通过 Flink SQL API 的形式实现 Hudi 表的操作,包含 batch 模式的读写和 streaming 模式的读。
二、环境筹备
本文应用 Flink Sql Client[7] 作为演示工具,SQL CLI 能够比拟不便地执行 SQL 的交互操作。
第一步:下载 Flink jar
Hudi 集成了 Flink 的 1.11 版本。您能够参考这里 [8] 来设置 Flink 环境。hudi-flink-bundle jar 是一个集成了 Flink 相干的 jar 的 uber jar, 目前举荐应用 scala 2.11 来编译。
第二步:设置 Flink 集群
启动一个 standalone 的 Flink 集群。启动之前,倡议将 Flink 的集群配置设置如下:
- 在 $FLINK_HOME/conf/flink-conf.yaml 中增加配置项 taskmanager.numberOfTaskSlots: 4
- 在 $FLINK_HOME/conf/workers 中将条目 localhost 设置成 4 行,这里的行数代表了本地启动的 worker 数
启动集群:
# HADOOP_HOME is your hadoop root directory after unpack the binary package.
export HADOOP_CLASSPATH=`$HADOOP_HOME/bin/hadoop classpath`
# Start the flink standalone cluster
./bin/start-cluster.sh
第三步:启动 Flink SQL Client
Hudi 的 bundle jar 应该在 Sql Client 启动的时候加载到 CLASSPATH 中。您能够在门路 hudi-source-dir/packaging/hudi-flink-bundle 下手动编译 jar 包或者从 Apache Official Repository [9]下载。
启动 SQL CLI:
# HADOOP_HOME is your hadoop root directory after unpack the binary package.
export HADOOP_CLASSPATH=`$HADOOP_HOME/bin/hadoop classpath`
./bin/sql-client.sh embedded -j .../hudi-flink-bundle_2.1?-*.*.*.jar shell
备注:
- 举荐应用 hadoop 2.9.x+ 版本,因为一些对象存储(aliyun-oss)从这个版本开始反对
- flink-parquet 和 flink-avro 曾经被打进 hudi-flink-bundle jar
- 您也能够间接将 hudi-flink-bundle jar 拷贝到 $FLINK_HOME/lib 目录下
- 本文的存储选取了对象存储 aliyun-oss,为了不便,您也能够应用本地门路
演示的工作目录构造如下:
/Users/chenyuzhao/workspace/hudi-demo
/- flink-1.11.3
/- hadoop-2.9.2
三、Batch 模式的读写
插入数据
应用如下 DDL 语句创立 Hudi 表:
Flink SQL> create table t2(> uuid varchar(20),
> name varchar(10),
> age int,
> ts timestamp(3),
> `partition` varchar(20)
> )
> PARTITIONED BY (`partition`)
> with (
> 'connector' = 'hudi',
> 'path' = 'oss://vvr-daily/hudi/t2'
> );
[INFO] Table has been created.
DDL 里申明了表的 path,record key 为默认值 uuid,pre-combine key 为默认值 ts。
而后通过 VALUES 语句往表中插入数据:
Flink SQL> insert into t2 values
> ('id1','Danny',23,TIMESTAMP '1970-01-01 00:00:01','par1'),
> ('id2','Stephen',33,TIMESTAMP '1970-01-01 00:00:02','par1'),
> ('id3','Julian',53,TIMESTAMP '1970-01-01 00:00:03','par2'),
> ('id4','Fabian',31,TIMESTAMP '1970-01-01 00:00:04','par2'),
> ('id5','Sophia',18,TIMESTAMP '1970-01-01 00:00:05','par3'),
> ('id6','Emma',20,TIMESTAMP '1970-01-01 00:00:06','par3'),
> ('id7','Bob',44,TIMESTAMP '1970-01-01 00:00:07','par4'),
> ('id8','Han',56,TIMESTAMP '1970-01-01 00:00:08','par4');
[INFO] Submitting SQL update statement to the cluster...
[INFO] Table update statement has been successfully submitted to the cluster:
Job ID: 59f2e528d14061f23c552a7ebf9a76bd
这里看到 Flink 的作业曾经胜利提交到集群,能够本地关上 web UI 察看作业的执行状况:
查问数据
作业执行实现后,通过 SELECT 语句查问表后果:
Flink SQL> set execution.result-mode=tableau;
[INFO] Session property has been set.
Flink SQL> select * from t2;
+-----+----------------------+----------------------+-------------+-------------------------+----------------------+
| +/- | uuid | name | age | ts | partition |
+-----+----------------------+----------------------+-------------+-------------------------+----------------------+
| + | id3 | Julian | 53 | 1970-01-01T00:00:03 | par2 |
| + | id4 | Fabian | 31 | 1970-01-01T00:00:04 | par2 |
| + | id7 | Bob | 44 | 1970-01-01T00:00:07 | par4 |
| + | id8 | Han | 56 | 1970-01-01T00:00:08 | par4 |
| + | id1 | Danny | 23 | 1970-01-01T00:00:01 | par1 |
| + | id2 | Stephen | 33 | 1970-01-01T00:00:02 | par1 |
| + | id5 | Sophia | 18 | 1970-01-01T00:00:05 | par3 |
| + | id6 | Emma | 20 | 1970-01-01T00:00:06 | par3 |
+-----+----------------------+----------------------+-------------+-------------------------+----------------------+
Received a total of 8 rows
这里执行语句 set execution.result-mode=tableau; 能够让查问后果间接输入到终端。
通过在 WHERE 子句中增加 partition 门路来裁剪 partition:
Flink SQL> select * from t2 where `partition` = 'par1';
+-----+----------------------+----------------------+-------------+-------------------------+----------------------+
| +/- | uuid | name | age | ts | partition |
+-----+----------------------+----------------------+-------------+-------------------------+----------------------+
| + | id1 | Danny | 23 | 1970-01-01T00:00:01 | par1 |
| + | id2 | Stephen | 33 | 1970-01-01T00:00:02 | par1 |
+-----+----------------------+----------------------+-------------+-------------------------+----------------------+
Received a total of 2 rows
更新数据
雷同的 record key 的数据会主动笼罩,通过 INSERT 雷同 key 的数据能够实现数据更新:
Flink SQL> insert into t2 values
> ('id1','Danny',24,TIMESTAMP '1970-01-01 00:00:01','par1'),
> ('id2','Stephen',34,TIMESTAMP '1970-01-01 00:00:02','par1');
[INFO] Submitting SQL update statement to the cluster...
[INFO] Table update statement has been successfully submitted to the cluster:
Job ID: 944de5a1ecbb7eeb4d1e9e748174fe4c
Flink SQL> select * from t2;
+-----+----------------------+----------------------+-------------+-------------------------+----------------------+
| +/- | uuid | name | age | ts | partition |
+-----+----------------------+----------------------+-------------+-------------------------+----------------------+
| + | id1 | Danny | 24 | 1970-01-01T00:00:01 | par1 |
| + | id2 | Stephen | 34 | 1970-01-01T00:00:02 | par1 |
| + | id3 | Julian | 53 | 1970-01-01T00:00:03 | par2 |
| + | id4 | Fabian | 31 | 1970-01-01T00:00:04 | par2 |
| + | id5 | Sophia | 18 | 1970-01-01T00:00:05 | par3 |
| + | id6 | Emma | 20 | 1970-01-01T00:00:06 | par3 |
| + | id7 | Bob | 44 | 1970-01-01T00:00:07 | par4 |
| + | id8 | Han | 56 | 1970-01-01T00:00:08 | par4 |
+-----+----------------------+----------------------+-------------+-------------------------+----------------------+
Received a total of 8 rows
能够看到 uuid 为 id1 和 id2 的数据 age 字段值产生了更新。
再次 insert 新数据察看后果:
Flink SQL> insert into t2 values
> ('id4','Fabian',32,TIMESTAMP '1970-01-01 00:00:04','par2'),
> ('id5','Sophia',19,TIMESTAMP '1970-01-01 00:00:05','par3');
[INFO] Submitting SQL update statement to the cluster...
[INFO] Table update statement has been successfully submitted to the cluster:
Job ID: fdeb7fd9f08808e66d77220f43075720
Flink SQL> select * from t2;
+-----+----------------------+----------------------+-------------+-------------------------+----------------------+
| +/- | uuid | name | age | ts | partition |
+-----+----------------------+----------------------+-------------+-------------------------+----------------------+
| + | id5 | Sophia | 19 | 1970-01-01T00:00:05 | par3 |
| + | id6 | Emma | 20 | 1970-01-01T00:00:06 | par3 |
| + | id3 | Julian | 53 | 1970-01-01T00:00:03 | par2 |
| + | id4 | Fabian | 32 | 1970-01-01T00:00:04 | par2 |
| + | id1 | Danny | 24 | 1970-01-01T00:00:01 | par1 |
| + | id2 | Stephen | 34 | 1970-01-01T00:00:02 | par1 |
| + | id7 | Bob | 44 | 1970-01-01T00:00:07 | par4 |
| + | id8 | Han | 56 | 1970-01-01T00:00:08 | par4 |
+-----+----------------------+----------------------+-------------+-------------------------+----------------------+
Received a total of 8 rows
四、Streaming 读
通过如下语句创立一张新的表并注入数据:
Flink SQL> create table t1(> uuid varchar(20),
> name varchar(10),
> age int,
> ts timestamp(3),
> `partition` varchar(20)
> )
> PARTITIONED BY (`partition`)
> with (
> 'connector' = 'hudi',
> 'path' = 'oss://vvr-daily/hudi/t1',
> 'table.type' = 'MERGE_ON_READ',
> 'read.streaming.enabled' = 'true',
> 'read.streaming.check-interval' = '4'
> );
[INFO] Table has been created.
Flink SQL> insert into t1 values
> ('id1','Danny',23,TIMESTAMP '1970-01-01 00:00:01','par1'),
> ('id2','Stephen',33,TIMESTAMP '1970-01-01 00:00:02','par1'),
> ('id3','Julian',53,TIMESTAMP '1970-01-01 00:00:03','par2'),
> ('id4','Fabian',31,TIMESTAMP '1970-01-01 00:00:04','par2'),
> ('id5','Sophia',18,TIMESTAMP '1970-01-01 00:00:05','par3'),
> ('id6','Emma',20,TIMESTAMP '1970-01-01 00:00:06','par3'),
> ('id7','Bob',44,TIMESTAMP '1970-01-01 00:00:07','par4'),
> ('id8','Han',56,TIMESTAMP '1970-01-01 00:00:08','par4');
[INFO] Submitting SQL update statement to the cluster...
[INFO] Table update statement has been successfully submitted to the cluster:
Job ID: 9e1dcd37fd0f8ca77534c30c7d87be2c
这里将 table option read.streaming.enabled 设置为 true,表明通过 streaming 的形式读取表数据;opiton read.streaming.check-interval 指定了 source 监控新的 commits 的距离为 4s;option table.type 设置表类型为 MERGE_ON_READ,目前只有 MERGE_ON_READ 表反对 streaming 读。
以上操作产生在一个 terminal 中,咱们称之为 terminal_1。
从新的 terminal(咱们称之为 terminal_2)再次启动 Sql Client,从新创立 t1 表并查问:
Flink SQL> set execution.result-mode=tableau;
[INFO] Session property has been set.
Flink SQL> create table t1(> uuid varchar(20),
> name varchar(10),
> age int,
> ts timestamp(3),
> `partition` varchar(20)
> )
> PARTITIONED BY (`partition`)
> with (
> 'connector' = 'hudi',
> 'path' = 'oss://vvr-daily/hudi/t1',
> 'table.type' = 'MERGE_ON_READ',
> 'read.streaming.enabled' = 'true',
> 'read.streaming.check-interval' = '4'
> );
[INFO] Table has been created.
Flink SQL> select * from t1;
2021-03-22 18:36:37,042 INFO org.apache.hadoop.conf.Configuration.deprecation [] - mapred.job.map.memory.mb is deprecated. Instead, use mapreduce.map.memory.mb
+-----+----------------------+----------------------+-------------+-------------------------+----------------------+
| +/- | uuid | name | age | ts | partition |
+-----+----------------------+----------------------+-------------+-------------------------+----------------------+
| + | id2 | Stephen | 33 | 1970-01-01T00:00:02 | par1 |
| + | id1 | Danny | 23 | 1970-01-01T00:00:01 | par1 |
| + | id6 | Emma | 20 | 1970-01-01T00:00:06 | par3 |
| + | id5 | Sophia | 18 | 1970-01-01T00:00:05 | par3 |
| + | id8 | Han | 56 | 1970-01-01T00:00:08 | par4 |
| + | id7 | Bob | 44 | 1970-01-01T00:00:07 | par4 |
| + | id4 | Fabian | 31 | 1970-01-01T00:00:04 | par2 |
| + | id3 | Julian | 53 | 1970-01-01T00:00:03 | par2 |
回到 terminal_1,继续执行 batch mode 的 INSERT 操作:
Flink SQL> insert into t1 values
> ('id1','Danny',27,TIMESTAMP '1970-01-01 00:00:01','par1');
[INFO] Submitting SQL update statement to the cluster...
[INFO] Table update statement has been successfully submitted to the cluster:
Job ID: 2dad24e067b38bc48c3a8f84e793e08b
几秒之后,察看 terminal_2 的输入多了一行:
+-----+----------------------+----------------------+-------------+-------------------------+----------------------+
| +/- | uuid | name | age | ts | partition |
+-----+----------------------+----------------------+-------------+-------------------------+----------------------+
| + | id2 | Stephen | 33 | 1970-01-01T00:00:02 | par1 |
| + | id1 | Danny | 23 | 1970-01-01T00:00:01 | par1 |
| + | id6 | Emma | 20 | 1970-01-01T00:00:06 | par3 |
| + | id5 | Sophia | 18 | 1970-01-01T00:00:05 | par3 |
| + | id8 | Han | 56 | 1970-01-01T00:00:08 | par4 |
| + | id7 | Bob | 44 | 1970-01-01T00:00:07 | par4 |
| + | id4 | Fabian | 31 | 1970-01-01T00:00:04 | par2 |
| + | id3 | Julian | 53 | 1970-01-01T00:00:03 | par2 |
| + | id1 | Danny | 27 | 1970-01-01T00:00:01 | par1 |
再次在 terminal_1 中执行 INSERT 操作:
Flink SQL> insert into t1 values
> ('id4','Fabian',32,TIMESTAMP '1970-01-01 00:00:04','par2'),
> ('id5','Sophia',19,TIMESTAMP '1970-01-01 00:00:05','par3');
[INFO] Submitting SQL update statement to the cluster...
[INFO] Table update statement has been successfully submitted to the cluster:
Job ID: ecafffda3d294a13b0a945feb9acc8a5
察看 terminal_2 的输入变动:
+-----+----------------------+----------------------+-------------+-------------------------+----------------------+
| +/- | uuid | name | age | ts | partition |
+-----+----------------------+----------------------+-------------+-------------------------+----------------------+
| + | id2 | Stephen | 33 | 1970-01-01T00:00:02 | par1 |
| + | id1 | Danny | 23 | 1970-01-01T00:00:01 | par1 |
| + | id6 | Emma | 20 | 1970-01-01T00:00:06 | par3 |
| + | id5 | Sophia | 18 | 1970-01-01T00:00:05 | par3 |
| + | id8 | Han | 56 | 1970-01-01T00:00:08 | par4 |
| + | id7 | Bob | 44 | 1970-01-01T00:00:07 | par4 |
| + | id4 | Fabian | 31 | 1970-01-01T00:00:04 | par2 |
| + | id3 | Julian | 53 | 1970-01-01T00:00:03 | par2 |
| + | id1 | Danny | 27 | 1970-01-01T00:00:01 | par1 |
| + | id5 | Sophia | 19 | 1970-01-01T00:00:05 | par3 |
| + | id4 | Fabian | 32 | 1970-01-01T00:00:04 | par2 |
五、总结
通过一些简略的演示,咱们发现 HUDI Flink 的集成曾经绝对欠缺,读写门路均已笼罩,对于具体的配置,能够参考 Flink SQL Config Options[10]。
Hudi 社区正在踊跃的推动和 Flink 的深度集成,包含但不限于:
- Flink streaming reader 反对 watermark,实现数据湖 / 仓的两头计算层 pipeline
- Flink 基于 Hudi 的物化视图,实现分钟级的增量视图,服务于线上的近实时查问
正文:
[1] https://www.alibabacloud.com/…
[2]https://aws.amazon.com/cn/emr…
[3]https://www.uber.com/
[4]http://www.slideshare.net/vin…
[5]https://eng.uber.com/uber-big…
[6]https://issues.apache.org/jir…
[7]https://ci.apache.org/project…
[8]https://flink.apache.org/down…
[9]https://repo.maven.apache.org…
[10]https://hudi.apache.org/docs/…