关于分布式系统:分布式系统设计简卷1Raft

34次阅读

共计 25248 个字符,预计需要花费 64 分钟才能阅读完成。

前言

  • 本篇是对于 2022-MIT 6.828 的对于 Raft 的试验记录;
  • 如果发现内容上的纰漏,请不要悭吝您的键盘。

Raft 基本概念

Raft 是怎么运行的

Raft 对于 Paxos 来说是个绝对简略的共识算法,但再怎么简略“Raft 是怎么运行的”也不是喋喋不休就能搞定的,而且我原本就没想喋喋不休搞定。所以在看了 Raft 论文 之后,这里有两个网页能够帮忙你了解 Raft 是怎么运行的:

  1. Raft Understandable Distributed Consensus
  2. Raft Visualization

另外还有三张我认为对我本人了解 Raft 很有帮忙的图,第一张是试验领导书上的

How the replicated service and Raft communicate,第二三张是 Morris 传授授课的板书截图:



协定对四个指针的束缚

Figure 3 中的束缚是 Raft 共识算法运行正确的根底,咱们将要实现的 Raft 代码库就要是实现这些束缚:

  1. lastApplied <= commitIndex <= matchIndex < nextIndex

    • 其中 matchIndexnextIndex 是 Leader 才有的字段;
    • 在所有节点中,都有上述 lastAppliedcommitIndex 的关系;
    • 在 Leader 中,对与它保护的过半数的 peer 的 commitIndexmatchIndex 都有上述关系。
    • 在 Leader 中,对与它保护的任一一个 peer 的 matchIndexnextIndex 都有上述关系。
  2. 无论是 Leader 的 lastApplied 还是 Follower 的 lastApplied 它们都是要尽全力地追赶各自的 commitIndex,途中须要把通过的 LogEntry 通过 applyCh 返回到下层利用中去。
  3. Leader 的 commitIndex

    • for index := Log.firstLogIndex() + 1; index <= Log.LastLogIndex(); index++
    • 跳过所有 Log.at(index).term != currentTerm 的日志,因为为了解决 Figure 8 中的 Safty 问题,Leader 只能提交本人任期内的日志
    • 找到一个最大的 index,在 matchIndex[] 中,使得有起码的多于一半个数的 matchIndex 都大于等于这个 index,最初 commitIndex := index
  4. Follower 的 commitIndex 小于等于 leaderCommit,因为 Follower 只有在 Leader 提交之后能力跟着提交的嘛。所以当 leaderCommit > commitIndex 时,commitIndex = min(leaderCommit, index of last new entry)

    • leaderCommit > commitIndex 的起因有很多,可能是因为 Follower 掉线了一阵子或是 Leader 之前的 AppendEntries RPC 丢包有异或是 Follower 单纯运行得慢等各种起因导致 Follower 没及时同步。

而对于 Leader 的 matchIndexnextIndex 之间的束缚关系有点简单,取决于 Log Consistency 的实现形式,即怎么解决 Figure 7 中的 Leader 和 Follower 的 Log Replica 不统一的问题的。论文提到了一个根底版本和一个优化形式,而这个优化版本正是咱们要在 Part 2C 中要做的。但在此之前,先通过 TA 提供的 Student Guide 里的提到的一段话来简述 matchIndexnextIndex

  • nextIndex is a guess as to what prefix the leader shares with a given follower. It is generally quite optimistic (we share everything), and is moved backwards only on negative responses.
  • matchIndex is used for safety. It is a conservative measurement of what prefix of the log the leader shares with a given follower.

    • 尽管最终稳定下来会有 matchIndex + 1 == nextIndex 的关系,但理论编写代码的时候千万不要间接用 nextIndex - 1 的值来更新 matchIndex,因为当你发送 PRC 的期间 nextIndex 的值有可能会扭转,所以须要用 args.prevLogIndex + len(args.entries) 的值来更新 matchIndex

Log Replication

根底版是通过一个条目一个条目标迭代式地搜寻这个 Follower 的适合的 nextIndex 的值的。优化版则是在根底版的算法上进步了步进,即是通过一个任期一个任期的迭代式地搜寻目标值。Raft Paper 里对根底版做了比拟具体的形容,但优化版要害就一句带过,并没有很具体地阐明这一块的逻辑,但幸好 TA 的 Student Guide 就有提供伪码级的实现。根底版就在 Paper 的 5.3 节,每一句话都要了解,这就间接介绍优化版的迭代搜索算法:

  1. 在 Leader 中,prevLogIndex := nextIndex - 1; prevLogTerm := Log.at(prevLogIndex).term,向 Follower 发送 AppendEntries RPC Request;
  2. Follower 执行 Consistency Check:

    1. If prevLogIndex 超出了本地日志范畴,则令 conflictTerm := -1,Leader 将会把 nextIndex := conflictIndex + 1

      • prevLogIndex > Log.lastLogIndex() 时,conflictIndex := Log.lastLogIndex(),将 reply.success := false 并返回;
      • prevLogIndex < Log.firstLogIndex() 时,conflictIndex := Log.firstLogIndex(),将 reply.success := false 并返回;
    2. Else If Log.at(prevIndex).term != prevLogTerm,则令 conflictTerm := Log.at(prevIndex).term,而后在本地的 Log 中找到 index 最小的属于 conflictTerm 的 LogEntry,最初令 conflictIndex := index,将 reply.success := false 并返回。
    3. Else,示意 match 胜利,没有任何的 conflict,但先不要焦急截断 pervLogIndex 之后的日志,因为网络始终是不牢靠的,Leader 发送过去的 AppendEntries RPC Request 可能乱序达到,咱们要做的就是先查看 Follower 的日志是否曾经全副蕴含发送过去的 args.entries

      • If 全副蕴含,不要截断任何日志,将 reply.success := true 并返回;
      • Else,截断 prevLogIndex 之后的所有日志,将 args.entries 追加到本地日志的尾部,最初将 reply.success := true 并返回。
  3. Leader 依据 Consistency Check 后果更新 nextIndex 和 matchIndex。

    1. If reply.success == true,证实匹配胜利,matchIndex := args.prevIndex + len(args.entries)nextIndex := matchIndex + 1
    2. Else If reply.conflictTerm == -1,令 nextIndex := conflictIndex + 1
    3. Else,Leader 在本地日志中搜寻是否存在任期为 conflictTerm 的日志:

      1. If 存在,设这些属于 conflictTerm 的日志中,领有的最大的索引为 index,则令 nextIndex := index + 1
      2. Else,则令 nextIndex := conflictIndex

程序测试和调试

测试基本概念

Lab Guidance 上写的对 Error 和 Fault 的定义很分明:

  1. Fault 是埋伏在代码中的,导致 Error 的 起因。typo 或是对协定的了解偏差都能够算作是 Fault。

    • Fault 和 Error 都是客观存在的,Error 是某些 Fault 的一次实例化的后果。
  2. Error 是指 某一时刻 程序的实践正确的状态和程序的理论状态之间的 偏差

    1. Latent Error:隐式地在代码中流传,最终会演化成 Observable Error 或 Masked Error;

      • 如在 Raft 中,一个 Log Entry 被谬误地追加到了本地日志中。
    2. Observable Error:浮现在程序的输入上的不统一,如输入错误信息、与预期不符的输入后果等;

      • 下面谬误的 Log Entry 又被谬误地提交了,导致测试报错;
    3. Masked Error:因为某种原因,如实现个性或设计,使得先前的 Latent Error 能够被疏忽。

      • 下面谬误地 Log Entry 在更进一步的变成 Observable Error 之前,被其它 Log Entry 覆写掉了。
  3. Instrumentation 是指一段能够报告以后程序状态的代码。

    • 能够是刻意地检测某个可能的谬误,如 assert() 语句,Log.Fatalf() 语句等;
    • 也能够是打印以后状态使得咱们能够依据这些历史运行信息来判断任何可能的谬误,如 printf() 语句、Log.printf() 语句等。

你可能曾经留神到了上一个局部介绍的 Consistency Check 算法不能辨别 Figure 7 中 (c)(d) 中领有 Extraneous Log 的状况(Latent Error)和失常的既没有 Extraneous Log 和 Miss Log 的的状况(Correct Status),即此时 Leader 发来一个 AppendEntries RPC Request,(c)(d) 没法截断它本身超出去的日志。这是个 masked error,并不影响程序最终执行到正确的状态。


Debug 的办法有两种,一种是 Fault to Error 称为 前向调试 ,另一种则是 Error to Fault 称为 反向调试。前者典型的有白盒测试,后者典型的就是黑盒测试。

在 6.824 的所有 Lab 你都会利用反向调试这种办法,因为附带的黑盒测试程序能即时反映出的程序的 Error 信息。咱们要做的就是锁定 Fault 的地位,一开始你须要猜想 Fault 的地位,而后依据你的假如去退出一些 Instrumentations 来使 Error 尽可能快地显现出来,从而放大 Fault 的呈现的范畴。如果假如通过校验(通过 current first observable error)发现不成立那就换一个假如持续测试。最终这样迭代几轮,通过一直地近似失去 Fault 呈现的准确地位(能够准确到某一行代码)。

一个有用的小技巧是,在程序外部的某一次迭代运行过程中,能够通过二分搜寻的形式在代码中插入 Instrumentations 来减速 Debug 过程。这个技巧对简略的程序是很管用的,但对一些大而简单的零碎来说,你往往很难去判断一次迭代运行的边界是哪里,而且也很难判断这次运行的“middle”在哪儿。

疾速地设计和实现你本人的为某个程序调试而配套的优良的 Instrumentation 是件考验程序员教训和功底的事件。上面是一些设计 Instrumentation 的实际(不好翻译,所以间接放原文了):

  • How much detail do you need from your instrumentation? Either in general, or just for the current step in your debugging process? How can you make it easier to adjust the level of detail and the main focus of your instrumentation? Can you turn on or off different pieces of debugging without deleting them from your code?

    (In particular, consider using an approach like the provided DPrintf function does, and defining one or more constant boolean flags to turn on or off different aspects of your instrumentation.)

  • How can you optimize your own ability to quickly read and understand what your instrumentation is indicating? Can you use text colors, columns, consistent formats, codewords, or symbols to make it easier to read?

    The best approach will be personalized to the particular way that YOU best percieve information, so you should experiment to find out what works well for you.

  • How can you enhance your own ability to add instrumentation? Can you use existing tools (like the go “log” package) to help? (I recommend turning on the Lmicroseconds flag, if you do.)

    Can you build your own helper functions, so that a common set of data (current server, term, and role, perhaps?) will always be displayed?

  • You might also consider trying to condense each individual event you report into a single line to facilitate your ability to scan output quickly.

Lab 2 调试的优良实际

这门课的 TA 给学生提供了他本人在做的 Instrumentation,原文为 Debugging by Pretty Printing。在做试验之前把这些都配好,能够大幅晋升你 Debug 的效率。

比起传统的下面介绍的调试伎俩,GDB 无疑是十分黑科技一样的存在,因为它能时刻显示程序的所有状态,但它还是招架不住 Raft 的特殊性,因为有超时机制。当然你想在每个物理节点上都去跑个 GDB 也不是不行,但一旦物理节点多了起来,用 GDB 调试可能会累死集体。

所以这时只能依附程序运行打印输出的日志信息来帮忙咱们排错。但这些产生的日志信息有这三个特点:盘根错节、宏大、信噪比低。因而大量的工夫将会被消耗在 Debug 上,因为 Time is money,所以这里的实际指标是让日志信息更加可读,从而缩短 Debug 的工夫,具体有以下几点:

  1. 日志输入须要遵循肯定的格局,使输入后果规整,不便浏览以及后续脚本程序处理;

    • Who is printing each line and what topic the message is related to.
    • When the message has been printed out (optional, ususally using a timestamp to represent that)
  2. 尽量只将必要的事件信息输入到日志中,缩小有效信息;

    • Confirm the top set, and it’s better to have no many types of event related to each topic.
    • 如果关联的事件过多就思考划分成若干个更小的 topic,留神管制粒度。
    • topic 和 event 的形容要准确。
  3. 通过脚本程序将这些日志信息格式化显示,如筛选、搜寻、标色等等

    • Rich and Typer, a couple of nifty Python libraries that make writing Terminal User Interface (TUI) applications a breeze

在最初 TA 也提倡同学们本人去搭建本人的 Instrumentation,不要间接拿来主义,这些代码同样是很好的学习范式,源代码以附录的模式贴在了文章的开端。

试验局部

根本设置

我本人的配置是 Election Timeout 为 400ms,心跳为 50ms。在上个试验(MapReduce)中,我是用一个十分麻烦的相似于中段触发的形式来实现 Election Timeout 倒计时解决的,更重要的是那种实现我没法很好地封装。但这次试验跟上个试验的 LoC 和复杂度就不一样,再用这种实现预计会疯掉……

不过 Student Guidance 里提醒用半轮询的形式来实现就简略很多很多了。重置倒计时能够用一个办法去很好地封装外面的解决逻辑,更新将来什么时候将会倒时即可。而后 go ticker() 单开一个线程,通过 sleep() 每隔 5ms 去查看这个字段看看和当初相比是否超时就行了。

此外 Log 的设计也是个比拟重要的中央,不好好封装 Log 的逻辑,可能会在 Lab 2D 那局部里到处碰壁,起因是有了 snapshot 之后,Log 的 firstLogIndex 就不肯定是 0 了。所以抉择用一些办法如 Log.at(), Log.firstLogIndex(), Log.lastLogIndex(), Log.trimTail(), Log.trimPrefix() 来封装这些操作可大大降低复杂度。

最初增加一个辅助办法 newTerm(term int),因为 Figure 2 中对所有 Server 要求,不论是 RPC 的发送端还是接收端,只有发现对方的任期比本人大,就要转换成 Follower,并将任期更新为最新的任期,而这个操作算上一共会用到 6 次(三种 RPC,每个 RPC 都有 Sender 和 Handler),所以很有必要将这个操作封装一下:

func (rf *Raft) newTerm(term int) {
    rf.status = Follower
    rf.votedFor = -1
    rf.currentTerm = term
}

所以依据 Figure 2 和 下面介绍的 Raft 的相干束缚,咱们就能够天然地写出上面的伪代码。须要留神的是所有 RPC sender 对 reply 的解决都必须要在以后 term 解决,因为 term 变掉了就证实本身状态就扭转了。而且一些细节我就疏忽了,像是 send RPC 新开线程、RPC 字段首字母大写、锁的获取和开释机会等等,因为就一把大锁没什么技巧。另外长久化我也省略了,反正凡是更新须要那些非易失的字段时就长久化一下就 ok 了。

Applier

// Applier go routine

for rf.killed() == false {
    if !rf.hasSnap {
        rf.hasSnap = true // apply snapshot only once
        if rf.snapshot.Snapshot == nil || len(rf.snapshot.Snapshot) < 1 {continue}
        
        create and config ApplyMsg
        rf.applicant.applyCh <- msg
    } else if rf.lastApplied + 1 <= rf.commitIndex {
        rf.lastApplied += 1
        
        create and config ApplyMsg
        rf.applicant.applyCh <- msg
    } else {rf.applicant.applierCond.Wait()
    }
}

RequestVoteRPC

Sender

// RequestVote RPC Sender pseudo code

// start a new election
rf.currentTerm += 1
rf.status = Candidate
rf.votedFor = rf.me
// vote for myself
vote := 1

rf.resetElectionTimeout()

for each peer in rf.peers {
    create and config RequestVote RPC Argument and Reply
    send RequestVote RPC Request to this peer
    
    if args.term == rf.currentTerm {
        if reply.term > rf.currentTerm {rf.newTerm(reply.term)
        } else if reply.voteGranted {
            vote += 1
            if vote == len(rf.peers)/2 + 1 {rf.conver2Leader() // initialize nextIndex and matchIndex for each peer
                   send AppendEntires RPC to each peer
            }
        }
    }
}

Handler

// RequestVote RPC Handler pseudo code

if args.term > rf.currentTerm {rf.newTerm(args.term)
}

if (args.term == rf.currentTerm) && (rf.votedFor == -1 || rf.votedFor == args.candidateId) && isUp2Date {
    rf.cotedFor = args.candidateId
    reply.coteGranted = true
    reply.term = rf.currentTerm
    rf.resetElectionTimeout()}

reply.Term = rf.CurrentTerm

AppendEntriesRPC

Sender

// AppendEntries RPC Sender pseudo code

rf.resetElectionTimeout()

for each peer in rf.peers {if rf.nextIndex[peer] < rf.Log.start() + 1 {send InstallSnapshot RPC to this peer} else {
        create and config AppendEntries RPC Argument and Reply
        send AppendEntries RPC Request to this peer
        
        if args.term == rf.currentTerm {
            if reply.term > rf.currentTerm {rf.newTerm(reply.term)
            } else if reply.success {
                update nextIndex, matchIndex, commitIndex
                singal applier
            } else {update nextIndex}
        }
    }
}

Handler

// AppendEntries RPC Handler pseudo code

if args.term > rf.currentTerm {rf.newTerm(args.term)
}

if args.term == rf.currentTerm {
    consistency check
    rf.resetElectionTimeout()}

reply.Term = rf.CurrentTerm

InstallSnapshot

这一部分我想了半天对于怎么把 snapshot 传给下层 以及 更新 snapshot 是否曾经利用过的状态长久化 的这两操作绑定在一起原子化。而起初才意识到状态机的状态是易失性的,crash 过后要从头 apply,所以只需保障 snapshot 的长久化就行了。

CondInstallSnapshot() 我就间接返回 True 了,因为我在 InstallSnapshot Handler 和 Applier 中的设计保障了不会有 Stale Snapshot 放到 applyCh 中去。

Snapshot

// Client call Snapshot pseudo code

if index < rf.lastApplied {return}

rf.Log.trimPrifix(index)

rf.snapshot.Snapshot = snapshot
rf.snapshot.SnapshotIndex = index
rf.snapshot.SnapshotTerm = rf.Log.at(index).term

rf.hasSnap = false // need to be applied

signal apllier

send InstallSnapshot RPC Request to each peers

Sender

// InstallSnapshot RPC Sender pseudo code

if rf.status != Leader {return}

rf.resetElectionTimeout()

for each peer in rf.peers {
    create and config InstallSnapshot RPC Argument and Reply
    send InstallSnapshot RPC Request to this peer
    
    if args.term == rf.currentTerm {
        if reply.term > rf.currentTerm {rf.newTerm()
        }
    }    
}

Handler

// InstallSnapshot RPC Handler pseudo code

if args.term > rf.currentTerm {rf.newTerm(args.term)
}

if args.term == rf.currentTerm {if args.lastIncludedIndex >= rf.Log.lastIndex() ||
        args.lastIncludedTerm != rf.Log.at(args.lastIncludedIndex).Term {rf.Log = makeLog(args.lastIncludedIndex, args.lastIncludedTerm)
        rf.commitIndex = args.lastIncludedIndex
    } else {rf.Log.trimPrefix(args.lastIncludedIndex)
    }
    
    rf.lastApplied = args.lastIncludedIndex

    rf.snapshot.Snapshot = args.data
    rf.snapshot.SnapshotIndex = args.lastIncludedIndex
    rf.snapshot.SnapshotTerm = args.lastIncludedTerm
    
    rf.hasSnap = false // need to be applied

    signal applier
    rf.resetElectionTime()}

reply.term = rf.currentTerm

后记

Lab 2 的内容真的有点多,做完之后就算通过了所有测试还是有点迷糊的感觉,这次试验做下来之后我感觉什么都能够忘,但有六个是不能忘的:

  1. Replicated Service 和 Raft 交互图;
  2. Figure 3 的束缚;
  3. Raft 对怎么通过这四个指针来实现这个束缚的;
  4. Log Replication 中的 Consistency Check 算法;
  5. Figure 8 解决了什么问题;
  6. Debug 的技巧。




Lab 2 残缺的一次测试理论工夫为 5 分钟,理论 CPU 工夫小于 30 秒,达到了 Lab 2 的要求。调试的时候心态要放平,好好看看测试为什么报错,如果从日志看不出猫腻那肯定是你打印的日志信息太少了,多加点就好,剩下的就交给工夫吧。

2 月 4 号从开始看 Raft 论文,到当初曾经花了近 2 周的工夫,感觉调试的能力减少了……

另外在补充上次 MapReduce 文章开端对于零碎开发的另三个步骤,也是目前集体的了解:

  1. 需要剖析:目前市面上同类产品的问题,因而咱们的零碎应该具备哪些性能,实质上是一系列指标的 trade-off。
  2. 接口定义:API 接口函数定义
  3. 架构设计:通常有很强的炫技空间,须要综合思考运算、存储和通信的形式,须要在这个阶段形容零碎的各个对象是怎么运行的,输入一份架构图和相干设计文档。为实现 API 和需要,须要设计全局和每个对象利用的算法和数据结构,并给出合理性。

心田 OS:

我认为是 6.824 是开给本科生的课,后果是给 MIT 的硕士生开的……

怎么这么卷呀,人均程度是不是太高了点,幸存者偏差不实用是吧,有没有搞错???

参考链接

  • Debugging by Pretty Printing
  • Lecture 06 – Raft1
  • Labs Guidance
  • Student Guide to Raft

Appendix

Instrumentaion

// ./util.go

package raft

import (
    "fmt"
    "log"
    "os"
    "strconv"
    "time"
)

// Debugging
const debug = 0

func DPrintf(format string, a ...interface{}) (n int, err error) {
    if debug >= 1 {log.Printf(format, a...)
    }
    return
}

// Retrieve the verbosity level from an environment variable
func getVerbosity() int {v := os.Getenv("VERBOSE")
    level := 0
    if v != "" {
        var err error
        level, err = strconv.Atoi(v)
        if err != nil {log.Fatalf("Invalid verbosity %v", v)
        }
    }
    return level
}

type logTopic string

const (
    dClient  logTopic = "CLNT" //
    dCommit  logTopic = "CMIT"
    dDrop    logTopic = "DROP" //
    dError   logTopic = "ERRO"
    dInfo    logTopic = "INFO"
    dLeader  logTopic = "LEAD" //
    dLog     logTopic = "LOG1"
    dLog2    logTopic = "LOG2"
    dPersist logTopic = "PERS"
    dSnap    logTopic = "SNAP"
    dTerm    logTopic = "TERM" //
    dTest    logTopic = "TEST"
    dTimer   logTopic = "TIMR" //
    dTrace   logTopic = "TRCE"
    dVote    logTopic = "VOTE" //
    dWarn    logTopic = "WARN"
)

var debugStart time.Time
var debugVerbosity int

func Init() {debugVerbosity = getVerbosity()
    debugStart = time.Now()

    log.SetFlags(log.Flags() &^ (log.Ldate | log.Ltime))
}

func Debug(topic logTopic, format string, a ...interface{}) {
    if debug >= 1 {time := time.Since(debugStart).Microseconds()
        time /= 100
        prefix := fmt.Sprintf("%06d %v", time, string(topic))
        format = prefix + format
        log.Printf(format, a...)
    }
}

func Status2Str(status int) string {
    var res string

    switch status {
    case Follower:
        res = "Follower"
    case Candidate:
        res = "Candidate"
    case Leader:
        res = "Leader"
    default:
        res = "None"
    }

    return res
}

Pretty Print Python 脚本程序

# ./dslogs.py

#!/usr/bin/env python
import sys
import shutil
from typing import Optional, List, Tuple, Dict

import typer
from rich import print
from rich.columns import Columns
from rich.console import Console
from rich.traceback import install

# fmt: off
# Mapping from topics to colors
TOPICS = {
    "TIMR": "#9a9a99",
    "VOTE": "#67a0b2",
    "LEAD": "#d0b343",
    "TERM": "#70c43f",
    "LOG1": "#4878bc",
    "LOG2": "#398280",
    "CMIT": "#98719f",
    "PERS": "#d08341",
    "SNAP": "#FD971F",
    "DROP": "#ff615c",
    "CLNT": "#00813c",
    "TEST": "#fe2c79",
    "INFO": "#ffffff",
    "WARN": "#d08341",
    "ERRO": "#fe2626",
    "TRCE": "#fe2626",
}
# fmt: on


def list_topics(value: Optional[str]):
    if value is None:
        return value
    topics = value.split(",")
    for topic in topics:
        if topic not in TOPICS:
            raise typer.BadParameter(f"topic {topic} not recognized")
    return topics


def main(file: typer.FileText = typer.Argument(None, help="File to read, stdin otherwise"),
    colorize: bool = typer.Option(True, "--no-color"),
    n_columns: Optional[int] = typer.Option(None, "--columns", "-c"),
    ignore: Optional[str] = typer.Option(None, "--ignore", "-i", callback=list_topics),
    just: Optional[str] = typer.Option(None, "--just", "-j", callback=list_topics),
):
    topics = list(TOPICS)

    # We can take input from a stdin (pipes) or from a file
    input_ = file if file else sys.stdin
    # Print just some topics or exclude some topics (good for avoiding verbose ones)
    if just:
        topics = just
    if ignore:
        topics = [lvl for lvl in topics if lvl not in set(ignore)]

    topics = set(topics)
    console = Console()
    width = console.size.width

    panic = False
    for line in input_:
        try:
            time, topic, *msg = line.strip().split(" ")
            # To ignore some topics
            if topic not in topics:
                continue

            msg = " ".join(msg)

            # Debug calls from the test suite aren't associated with
            # any particular peer. Otherwise we can treat second column
            # as peer id
            if topic != "TEST":
                i = int(msg[1])

            # Colorize output by using rich syntax when needed
            if colorize and topic in TOPICS:
                color = TOPICS[topic]
                msg = f"[{color}]{msg}[/{color}]"

            # Single column printing. Always the case for debug stmts in tests
            if n_columns is None or topic == "TEST":
                print(time, msg)
            # Multi column printing, timing is dropped to maximize horizontal
            # space. Heavylifting is done through rich.column.Columns object
            else:
                cols = ["" for _ in range(n_columns)]
                msg = "" + msg
                cols[i] = msg
                col_width = int(width / n_columns)
                cols = Columns(cols, width=col_width - 1, equal=True, expand=True)
                print(cols)
        except:
            # Code from tests or panics does not follow format
            # so we print it as is
            if line.startswith("panic"):
                panic = True
            # Output from tests is usually important so add a
            # horizontal line with hashes to make it more obvious
            if not panic:
                print("#" * console.width)
            print(line, end="")


if __name__ == "__main__":
    typer.run(main)

Concurrent Test 脚本

Python 版本

选项 –help 输入提示信息

# ./dstest.py

#!/usr/bin/env python

import itertools
import math
import signal
import subprocess
import tempfile
import shutil
import time
import os
import sys
import datetime
from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor, wait, FIRST_COMPLETED
from dataclasses import dataclass
from pathlib import Path
from typing import List, Optional, Dict, DefaultDict, Tuple

import typer
import rich
from rich import print
from rich.table import Table
from rich.progress import (
    Progress,
    TimeElapsedColumn,
    TimeRemainingColumn,
    TextColumn,
    BarColumn,
    SpinnerColumn,
)
from rich.live import Live
from rich.panel import Panel
from rich.traceback import install

install(show_locals=True)


@dataclass
class StatsMeter:
    """
    Auxiliary classs to keep track of online stats including: count, mean, variance
    Uses Welford's algorithm to compute sample mean and sample variance incrementally.
    https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#On-line_algorithm
    """

    n: int = 0
    mean: float = 0.0
    S: float = 0.0

    def add(self, datum):
        self.n += 1
        delta = datum - self.mean
        # Mk = Mk-1+ (xk – Mk-1)/k
        self.mean += delta / self.n
        # Sk = Sk-1 + (xk – Mk-1)*(xk – Mk).
        self.S += delta * (datum - self.mean)

    @property
    def variance(self):
        return self.S / self.n

    @property
    def std(self):
        return math.sqrt(self.variance)


def print_results(results: Dict[str, Dict[str, StatsMeter]], timing=False):
    table = Table(show_header=True, header_style="bold")
    table.add_column("Test")
    table.add_column("Failed", justify="right")
    table.add_column("Total", justify="right")
    if not timing:
        table.add_column("Time", justify="right")
    else:
        table.add_column("Real Time", justify="right")
        table.add_column("User Time", justify="right")
        table.add_column("System Time", justify="right")

    for test, stats in results.items():
        if stats["completed"].n == 0:
            continue
        color = "green" if stats["failed"].n == 0 else "red"
        row = [f"[{color}]{test}[/{color}]",
            str(stats["failed"].n),
            str(stats["completed"].n),
        ]
        if not timing:
            row.append(f"{stats['time'].mean:.2f} ± {stats['time'].std:.2f}")
        else:
            row.extend(
                [f"{stats['real_time'].mean:.2f} ± {stats['real_time'].std:.2f}",
                    f"{stats['user_time'].mean:.2f} ± {stats['user_time'].std:.2f}",
                    f"{stats['system_time'].mean:.2f} ± {stats['system_time'].std:.2f}",
                ]
            )
        table.add_row(*row)

    print(table)


def run_test(test: str, race: bool, timing: bool):
    test_cmd = ["go", "test", f"-run={test}"]
    if race:
        test_cmd.append("-race")
    if timing:
        test_cmd = ["time"] + cmd
    f, path = tempfile.mkstemp()
    start = time.time()
    proc = subprocess.run(test_cmd, stdout=f, stderr=f)
    runtime = time.time() - start
    os.close(f)
    return test, path, proc.returncode, runtime


def last_line(file: str) -> str:
    with open(file, "rb") as f:
        f.seek(-2, os.SEEK_END)
        while f.read(1) != b"\n":
            f.seek(-2, os.SEEK_CUR)
        line = f.readline().decode()
    return line


# fmt: off
def run_tests(tests: List[str],
    sequential: bool       = typer.Option(False,  '--sequential',      '-s',    help='Run all test of each group in order'),
    workers: int           = typer.Option(1,      '--workers',         '-p',    help='Number of parallel tasks'),
    iterations: int        = typer.Option(10,     '--iter',            '-n',    help='Number of iterations to run'),
    output: Optional[Path] = typer.Option(None,   '--output',          '-o',    help='Output path to use'),
    verbose: int           = typer.Option(0,      '--verbose',         '-v',    help='Verbosity level', count=True),
    archive: bool          = typer.Option(False,  '--archive',         '-a',    help='Save all logs intead of only failed ones'),
    race: bool             = typer.Option(False,  '--race/--no-race',  '-r/-R', help='Run with race checker'),
    loop: bool             = typer.Option(False,  '--loop',            '-l',    help='Run continuously'),
    growth: int            = typer.Option(10,     '--growth',          '-g',    help='Growth ratio of iterations when using --loop'),
    timing: bool           = typer.Option(False,   '--timing',          '-t',    help='Report timing, only works on macOS'),
    # fmt: on
):

    if output is None:
        timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
        output = Path(timestamp)

    if race:
        print("[yellow]Running with the race detector\n[/yellow]")

    if verbose > 0:
        print(f"[yellow] Verbosity level set to {verbose}[/yellow]")
        os.environ['VERBOSE'] = str(verbose)

    while True:

        total = iterations * len(tests)
        completed = 0

        results = {test: defaultdict(StatsMeter) for test in tests}

        if sequential:
            test_instances = itertools.chain.from_iterable(itertools.repeat(test, iterations) for test in tests)
        else:
            test_instances = itertools.chain.from_iterable(itertools.repeat(tests, iterations))
        test_instances = iter(test_instances)

        total_progress = Progress("[progress.description]{task.description}",
            BarColumn(),
            TimeRemainingColumn(),
            "[progress.percentage]{task.percentage:>3.0f}%",
            TimeElapsedColumn(),)
        total_task = total_progress.add_task("[yellow]Tests[/yellow]", total=total)

        task_progress = Progress("[progress.description]{task.description}",
            SpinnerColumn(),
            BarColumn(),
            "{task.completed}/{task.total}",
        )
        tasks = {test: task_progress.add_task(test, total=iterations) for test in tests}

        progress_table = Table.grid()
        progress_table.add_row(total_progress)
        progress_table.add_row(Panel.fit(task_progress))

        with Live(progress_table, transient=True) as live:

            def handler(_, frame):
                live.stop()
                print('\n')
                print_results(results)
                sys.exit(1)

            signal.signal(signal.SIGINT, handler)

            with ThreadPoolExecutor(max_workers=workers) as executor:

                futures = []
                while completed < total:
                    n = len(futures)
                    if n < workers:
                        for test in itertools.islice(test_instances, workers-n):
                            futures.append(executor.submit(run_test, test, race, timing))

                    done, not_done = wait(futures, return_when=FIRST_COMPLETED)

                    for future in done:
                        test, path, rc, runtime = future.result()

                        results[test]['completed'].add(1)
                        results[test]['time'].add(runtime)
                        task_progress.update(tasks[test], advance=1)
                        dest = (output / f"{test}_{completed}.log").as_posix()
                        if rc != 0:
                            print(f"Failed test {test} - {dest}")
                            task_progress.update(tasks[test], description=f"[red]{test}[/red]")
                            results[test]['failed'].add(1)
                        else:
                            if results[test]['completed'].n == iterations and results[test]['failed'].n == 0:
                                task_progress.update(tasks[test], description=f"[green]{test}[/green]")

                        if rc != 0 or archive:
                            output.mkdir(exist_ok=True, parents=True)
                            shutil.copy(path, dest)
 
                        if timing:
                            line = last_line(path)
                            real, _, user, _, system, _ = line.replace(''*8,'').split(' ')
                            results[test]['real_time'].add(float(real))
                            results[test]['user_time'].add(float(user))
                            results[test]['system_time'].add(float(system))

                        os.remove(path)

                        completed += 1
                        total_progress.update(total_task, advance=1)

                        futures = list(not_done)

        print_results(results, timing)

        if loop:
            iterations *= growth
            print(f"[yellow]Increasing iterations to {iterations}[/yellow]")
        else:
            break


if __name__ == "__main__":
    typer.run(run_tests)

Shell 版本

# ./go-test-many.sh
# https://gist.github.com/jonhoo/f686cacb4b9fe716d5aa

#!/bin/bash
#
# Script for running `go test` a bunch of times, in parallel, storing the test
# output as you go, and showing a nice status output telling you how you're
# doing.
#
# Normally, you should be able to execute this script with
#
#   ./go-test-many.sh
#
# and it should do The Right Thing(tm) by default. However, it does take some
# arguments so that you can tweak it for your testing setup. To understand
# them, we should first go quickly through what exactly this script does.
#
# First, it compiles your Go program (using go test -c) to ensure that all the
# tests are run on the same codebase, and to speed up the testing. Then, it
# runs the tester some number of times. It will run some number of testers in
# parallel, and when that number of running testers has been reached, it will
# wait for the oldest one it spawned to finish before spawning another. The
# output from each test i is stored in test-$i.log and test-$i.err (STDOUT and
# STDERR respectively).
#
# The options you can specify on the command line are:
#
#   1) how many times to run the tester (defaults to 100)
#   2) how many testers to run in parallel (defaults to the number of CPUs)
#   3) which subset of the tests to run (default to all tests)
#
# 3) is simply a regex that is passed to the tester under -test.run; any tests
# matching the regex will be run.
#
# The script is smart enough to clean up after itself if you kill it
# (in-progress tests are killed, their output is discarded, and no failure
# message is printed), and will automatically continue from where it left off
# if you kill it and then start it again.
#
# By now, you know everything that happens below.
# If you still want to read the code, go ahead.

if [$# -eq 1] && ["$1" = "--help"]; then
    echo "Usage: $0 [RUNS=100] [PARALLELISM=#cpus] [TESTPATTERN='']"
    exit 1
fi

# If the tests don't even build, don't bother. Also, this gives us a static
# tester binary for higher performance and higher reproducability.
if ! go test -c -o tester; then
    echo -e "\e[1;31mERROR: Build failed\e[0m"
    exit 1
fi

# Default to 100 runs unless otherwise specified
runs=100
if [$# -gt 0]; then
    runs="$1"
fi

# Default to one tester per CPU unless otherwise specified
parallelism=$(grep -c processor /proc/cpuinfo)
if [$# -gt 1]; then
    parallelism="$2"
fi

# Default to no test filtering unless otherwise specified
test=""
if [$# -gt 2]; then
    test="$3"
fi

# Figure out where we left off
logs=$(find . -maxdepth 1 -name 'test-*.log' -type f -printf '.' | wc -c)
success=$(grep -E '^PASS$' test-*.log | wc -l)
((failed = logs - success))

# Finish checks the exit status of the tester with the given PID, updates the
# success/failed counters appropriately, and prints a pretty message.
finish() {
    if ! wait "$1"; then
        if command -v notify-send >/dev/null 2>&1 &&((failed == 0)); then
            notify-send -i weather-storm "Tests started failing" \
                "$(pwd)\n$(grep FAIL: -- *.log | sed -e's/.*FAIL: / - /'-e's/ (.*)//'| sort -u)"
        fi
        ((failed += 1))
    else
        ((success += 1))
    fi

    if ["$failed" -eq 0]; then
        printf "\e[1;32m";
    else
        printf "\e[1;31m";
    fi

    printf "Done %03d/%d; %d ok, %d failed\n\e[0m" \
        $((success+failed)) \
        "$runs" \
        "$success" \
        "$failed"
}

waits=() # which tester PIDs are we waiting on?
is=()    # and which iteration does each one correspond to?

# Cleanup is called when the process is killed.
# It kills any remaining tests and removes their output files before exiting.
cleanup() {for pid in "${waits[@]}"; do
        kill "$pid"
        wait "$pid"
        rm -rf "test-${is[0]}.err" "test-${is[0]}.log"
        is=("${is[@]:1}")
    done
    exit 0
}
trap cleanup SIGHUP SIGINT SIGTERM

# Run remaining iterations (we may already have run some)
for i in $(seq "$((success+failed+1))" "$runs"); do
    # If we have already spawned the max # of testers, wait for one to
    # finish. We'll wait for the oldest one beause it's easy.
    if [[${#waits[@]} -eq "$parallelism" ]]; then
        finish "${waits[0]}"
        waits=("${waits[@]:1}") # this funky syntax removes the first
        is=("${is[@]:1}")       # element from the array
    fi

    # Store this tester's iteration index
    # It's important that this happens before appending to waits(),
    # otherwise we could get an out-of-bounds in cleanup()
    is=("${is[@]}" $i)

    # Run the tester, passing -test.run if necessary
    if [[-z "$test"]]; then
        ./tester -test.v 2> "test-${i}.err" > "test-${i}.log" &
        pid=$!
    else
        ./tester -test.run "$test" -test.v 2> "test-${i}.err" > "test-${i}.log" &
        pid=$!
    fi

    # Remember the tester's PID so we can wait on it later
    waits=("${waits[@]}" $pid)
done

# Wait for remaining testers
for pid in "${waits[@]}"; do
    finish "$pid"
done

if ((failed>0)); then
    exit 1
fi
exit 0

正文完
 0