共计 6231 个字符,预计需要花费 16 分钟才能阅读完成。
Advent of code 2020 elixir 解法回顾(上)
网络上有很多乏味的编程题库,其中 Advent of code 近几年收到越来越多人的关注。起因是题目很乏味,联合圣诞节主题,在圣诞节前的 25 天每天一题。另外不限度编程语言,只须要输出正确答案即可。每做出一题还会失去一颗圣诞树上的小星星,有成就感。往年我应用 elixir 来解题,转眼间曾经做了过半的题目,于是写一篇文章来回顾一下。如果你也想尝试解题,倡议做完再看。
第一天
第一局部是从一个由数字组成的列表中,找到两个数,它们的和等于 2020,返回它们的积。为了让查问快一些,我用了一个 MapSet(查问复杂度 O(1)) 来代替 List (查问复杂度 O(n)) 存储这些数字,而后遍历 List,在 MapSet 中寻找可能和以后的数相加等于 2020 的数。
Enum.reduce_while(list, mapset, fn x, acc ->
if MapSet.member?(acc, 2020 - x) do
{:halt, x * (2020 - x)}
else
{:cont, MapSet.put(acc, x)}
end
end)
第二局部是把两个数变成了三个数。能够三次遍历 List,而后应用 raise
语句来抛出异样从在找到满足条件的数时突破循环。因为题目规定不能够重复使用同一个地位的数,所以须要记录每个数的 index。也能够应用三次嵌套的 reduce_while
来寻找答案,益处是不须要 raise
和 index
了,毛病是代码看起来很丑。
Enum.reduce_while(list, list, fn x, list ->
case Enum.reduce_while(tl(list), tl(list), fn y, list ->
case Enum.reduce_while(tl(list), tl(list), fn z, list ->
if x + y + z == 2020 do
{:halt, x * y * z}
else
{:cont, tl(list)}
end
end) do
[] ->
{:cont, tl(list)}
a ->
{:halt, a}
end
end) do
[] ->
{:cont, tl(list)}
a ->
{:halt, a}
end
end)
第二天
第一局部和第二局部都是依据既定的规定来统计非法的“明码”的数量,不同之处是应用的规定不同。第一局部的规定是字符串里某个字母呈现的次数,例如 1-2 z
示意字符串里只能由 1 到 2 个 z
。比拟麻烦的中央可能就是把规定解码进去,如果你相熟正则表达式会比拟快。而后依据规定查看每个 “password”。
validate = fn {min, max, [letter], pass} ->
String.to_charlist(pass)
|> Enum.count(fn x -> x == letter end)
|> (fn x -> if x >= min and x <= max, do: 1, else: 0 end).()
end
第二局部的规定是“明码”的某两个地位里,必须有且只有一个地位是给定的字母。例如 1-2 z
示意“明码”的第一位和第二位有且只有一位是 z
。能够用 erlang 的字符串匹配来查看某一位的值,而后应用异或逻辑来形容“有且只有”。
xor = fn a, b ->
if not (a and b) and (a or b) do
1
else
0
end
end
toboggan_corporate = fn {left, right, , pass} ->
s1 = left - 1
s2 = right - 1
match?(<<_::bytes-size(s1), ^code, _::binary>>, pass)
|> xor.(match?(<<_::bytes-size(s2), ^code, _::binary>>, pass))
end
第三天
第三天是很有画面感的一道题,甚至有人把它做成了动画。在一个二维的地图上,从左上角登程,依照肯定的规定跳跃前进,统计一路上会遇到多少颗树(用 #
示意),而后返回所有的规定里会遇到的树的数量的乘积。第一局部和第二局部惟一的区别只是口头的规定不同。
slops1 = [{3, 1}
]
slops2 = [{1, 1},
{3, 1},
{5, 1},
{7, 1},
{1, 2}
]
对于向下和向右,须要用不同的形式去解决,向右的时候,如果达到了地图边缘,像很多老游戏的解决形式一样,又从地图的右边呈现(也能够认为是把地图复制了一份到左边)。
check_tree = fn s, p ->
p = rem(p, String.length(s))
String.at(s, p) == "#"
end
for {slops, label} <- Enum.with_index([slops1, slops2]) do
Enum.reduce(slops, 1, fn {right, down}, acc ->
s =
data
|> Enum.take_every(down)
|> tl()
|> Enum.reduce({0, 0}, fn x, {count, p} ->
p = p + right
if check_tree.(x, p) do
{count + 1, p}
else
{count, p}
end
end)
|> elem(0)
acc * s
end)
|> IO.inspect(label: "Day3 Part#{label}")
end
第四天
这一题是很常见的业务逻辑:数据格式校验。首先我把数据解析成了 map 格局便于解决,第一局部能够用 match?
来实现,map 构造里的元素是不保障程序的,所以在匹配的时候也不会要求程序统一。说到这个,elixir 里有一个可能会被坑到中央,就是如果你写了两个 function clauses,都用 map 去匹配,即便第二个 clause 永远不会匹配到,elixir compiler 也是不会提醒的。
第一局部的解法:
data
|> Enum.count(&match?(%{ecl: _, pid: _, eyr: _, hcl: _, byr: _, iyr: _, hgt: _}, &1))
第二局部就比较复杂了,还是那句话,如果你很相熟正则表达式,就能够很快地解答进去,如果是像我一样只会用最根底的正则,那可能就麻烦一点。但益处是正则做不到的性能,咱们也能够做到。
rules = [
{:byr,
rcheck.(~r/^[0-9]{4}$/)
|> fand.(range.(1920, 2002))},
{:iyr,
rcheck.(~r/^[0-9]{4}$/)
|> fand.(range.(2010, 2020))},
{:eyr,
rcheck.(~r/^[0-9]{4}$/)
|> fand.(range.(2020, 2030))},
{:hgt,
rcapture.(~r/^([0-9]{2})in$/)
|> fmap.(range.(59, 76))
|> ffor.(rcapture.(~r/^([0-9]{3})cm$/)
|> fmap.(range.(150, 193))
)},
{:hcl, rcheck.(~r/^#[0-9a-f]{6}$/)},
{:ecl, fn x -> x in ~w(amb blu brn gry grn hzl oth) end},
{:pid, rcheck.(~r/^[0-9]{9}$/)}
]
这里的 fand
, fmap
, ffor
是对匿名函数进行 and
,map
,or
的操作,这样就能够用匿名函数来示意规定的一部分,而后用逻辑运算把不同的规定不便地联合在一起。
fand = fn f1, f2 ->
fn x ->
f1.(x) and f2.(x)
end
end
ffor = fn f1, f2 ->
fn x ->
f1.(x) or f2.(x)
end
end
fmap = fn f1, f2 ->
fn x ->
case f1.(x) do
false -> false
a -> f2.(a)
end
end
end
第五天
这道题一开始我规规矩矩地依照题目的形容去二分,计算座位 ID。而看到他人的解法之后,我的心田是解体的。因为所谓的座位 ID,其实就等于 FFFBBBFRRR
依照 F -> 0, B -> 1, L -> 0, R -> 1
转换为二进制后的值。
第二局部能够依照题目的形容去写代码,“找到一个地位,它不在列表里,但它的前一位和后一位都在列表里”.
for id <- 1..(heighest - 1) do
if not MapSet.member?(set, id) do
if Enum.all?([id - 1, id + 1], fn x ->
MapSet.member?(set, x)
end) do
IO.inspect(id, label: "Day5 Part2")
end
end
end
第六天
问题是“在多个群组外面进行投票,统计合乎规定的选项的数量”,第一局部的规定是:“所有被抉择的选项(不反复)”,第二局部的规定是:“所有人都抉择了的选项”. 能够这样形容这两种规定:
uniq_in_group = fn g ->
g
|> List.flatten()
|> Enum.into(MapSet.new())
|> MapSet.size()
end
common = fn x, y ->
Enum.filter(x, fn a -> a in y end)
end
common_in_group = fn [h | t] ->
t
|> Enum.reduce(h, common)
|> length()
end
MapSet 是公认的“找不同”的利器。而“找雷同”能够用 reduce
依此 filter
出那些“我有你也有”的项。
第七天
我把这个问题称为“千层包”,很像是编译器开展宏的流程。首先应用一个嵌套的 map 构造去存储每个“bag”的“定义”,而后应用另外一个 map 去存储开展后的构造。反复地去开展 bag,即用 bag 的“定义”去替换 bag 自身,直到不能再开展为止。
expand = fn rules, contains ->
Enum.reduce_while(Stream.cycle([1]), contains, fn _, acc ->
new_acc =
Enum.reduce(acc, %{}, fn {bag, n}, acc1 ->
case rules[bag] do
m when map_size(m) == 0 ->
%{bag => n}
nil ->
%{bag => n}
contains1 ->
for {bag1, n1} <- contains1, into: %{} do
{bag1, n * n1}
end
|> Map.merge(%{"opened #{bag}" => n})
end
|> Map.merge(acc1, fn _k, v1, v2 -> v1 + v2 end)
end)
if new_acc == acc do
{:halt, new_acc}
else
{:cont, new_acc}
end
end)
end
这里有一个陷阱,被开展的 bag 本身也须要被记入总数。所以在开展后的 map 里我退出了 "opened #{bag}" 这样的 key,以不便计数。这里的 Stream.cycle([1])
其实是为了以简略的形式联合 reduce_while
发明一个循环体。第一局部中,须要统计“shiny gold”,只需把它的定义置空,让其不再持续开展即可。
第八天
如果你已经尝试实现一个简略的虚拟机,那么这一题你肯定会感觉不生疏。实质上是依据“纸带”传来的命令去对 state
进行更新。在这一题里,咱们能够这样设计 state
蕴含的内容,别离是 以后的 index,以后的值,和执行过的命令的 indexes。说起这个 jmp
命令呀,就像这道题目外面说的一样,有可能引起有限循环。所以在有一些非凡的虚拟机中,是不存在 jmp
命令的,比方 Bitcoin Script 的虚拟机。
exe = fn
{"nop", _}, i, a -> {i + 1, a}
{"acc", v}, i, a -> {i + 1, a + v}
{"jmp", v}, i, a -> {i + v, a}
end
run = fn d ->
Enum.reduce_while(Stream.cycle([0]), {0, 0, MapSet.new()}, fn _, {i, a, history} ->
cond do
MapSet.member?(history, i) ->
{:halt, a}
i == map_size(d) ->
{:halt, {:terminate, a}}
true ->
{i1, a1} = exe.(d[i], i, a)
{:cont, {i1, a1, MapSet.put(history, i)}}
end
end)
end
第二局部,能够像题目中形容的那样,尝试替换 nop
和 jmp
命令,看看能不能运行出符合要求的后果。
第九天
第一局部,找出列表中不合乎“一个数字列表,除了结尾的 pre
个数,之后的数都满足:等于其之前的 pre
个数中的某两个数的和”的数。这里的问题有一点点像第一天的问题,不过因为 pre
的值很小(25),这里应用 List 去遍历就能够了。
one_valid = fn ins, x ->
Enum.any?(ins, fn y -> (x - y) in ins and 2 * y != x end)
end
valid = fn data, pre ->
{pres, data} = Enum.split(data, pre)
Enum.reduce_while(data, pres, fn x, acc ->
if one_valid.(acc, x) do
{:cont, tl(acc) ++ [x]}
else
{:halt, x}
end
end)
end
第二局部,问题是“找出一段在列表里间断的数,它们的和等于指定的数”。咱们能够先假如符合条件的子数列的长度是 1,2,3... 以此类推。在计算子数列中数字之和的时候,也能够用到上一步的后果,例如一个从 index i 开始的,长度为 n 的子数列,它的元素和等于从 i 开始的,长度为 n-1 的子数列的元素和,加上 index i 处的值。这里我用 {sum_of_value, start_index, end_index}
来示意一个子数列。一个细节:子数列的长度每减少 n,子数列的数量就会缩小一个,换句话说,上一步里最初一个子数列不具备持续扩张的能力。
sets = fn
idata, last_sets ->
last_sets
|> Enum.drop(-1)
|> Enum.map(fn {v, s, e} ->
{v + idata[e + 1], s, e + 1}
end)
end
init_sets =
Enum.map(data |> Enum.with_index(), fn {v, i} ->
{v, i, i}
end)
第十天
第一个问题次要是“找到间距为 3 和间距为 1 的相邻数字组合”,首先把数列从小到大排序,而后计算出相邻数字的间距。
distance = fn list ->
Enum.reduce(list, {[0 | list], []}, fn x, {[h | t], r} -> {t, [x - h | r]} end)
|> elem(1)
|> Enum.reverse()
end
第二个问题,“从最低层到顶层有多少种门路”,首先在脑海中设想一下这些门路的的图,是一个树状的构造,须要统计它的叶子节点的数量。看到树,就想到了形象语法树,从而想到宏的开展,进而想到了第七天的问题,间接把第七天的代码复制过去稍作批改就能够解决。这里的细节是如何把被节点结构成 {node, children}
的构造,每个 child 必须是在汇合中,且满足比 node 的值小 1 到 3 .
before = fn x -> (x - 3)..(x - 1) end
attach_before = fn x, set ->
{
x,
before.(x)
|> Enum.filter(fn y ->
MapSet.member?(set, y) and y >= 0
end)
|> Enum.map(fn x -> {x, 1} end)
|> Enum.into(%{})
}
end